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Abstract. Vibro-acoustic Transfer Path Analysis (TPA) is a tool to evaluate the contribution of different energy 
propagation paths between a source and a receiver, linked to each other by a number of connections. TPA is typically 
used to quantify and rank the relative importance of these paths in a given frequency band, determining the most 
significant one to the receiver. Basically, two quantities have to be determined for TPA: the operational forces at each 
transfer path and the Frequency Response Functions (FRF) of these paths. The FRF are obtained either experimentally 
or analytically, and the influence of the mechanical impedance of the source can be taken into account or not. The 
operational forces can be directly obtained from measurements using force transducers or indirectly estimated from 
auxiliary response measurements. Two methods to obtain the operational forces indirectly – the Complex Stiffness 
Method and the Matrix Inversion Method – associated with two possible configurations to determine the FRF – 
including and excluding the source impedance – are presented and discussed in this paper. The effect of weak and 
strong coupling among the paths is also commented considering the techniques previously presented. The main  
conclusion is that, with the source removed, CSM gives more accurate results. On the other hand, with the source 
present, MIM is preferable. In the latter case, CSM should be used only if there is a high impedance mismatch between 
the source and the receiver. Both methods are not affected by a higher or lower degree of coupling among the transfer 
paths. 
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1. Introduction  
 

Vibro-acoustic Transfer Path Analysis (TPA) is a tool to evaluate the contribution of different energy propagation 
paths between a source and a receiver, linked to each other by a number of connections. TPA is typically used to rank 
the relative importance of the vibro-acoustic paths in a frequency band and to determine the most significant path to a 
given receiver location. Since the path is identified and quantified, techniques of noise and vibration control can be 
efficiently applied to minimize the overall response level. It should be noted that contributions of each path are vector 
quantities, that is, their magnitudes are not necessarily summed to obtain the total level but destructive interference can 
occur at certain frequencies. 

A single source, implying in total coherence among the noise paths, is the simplest case of TPA. A classical example 
of this situation is the analysis of the interior noise of an automobile caused by the engine operation during the normal 
usage. 

Basically, two quantities have to be determined during the analysis. The operational forces at each transfer path and 
Frequency Response Functions (FRF) through these paths. The FRF are obtained either experimentally or analytically 
and the influence of the mechanical impedance of the source can be taken into account or not. The operational forces 
can be directly obtained from measurements using force transducers or estimated through the measurement of auxiliary 
parameters, using indirect techniques. The methods to obtain these quantities and consequently the transfer paths will be 
presented and discussed in the present work.  

The determination of the operational forces directly is not always feasible in practical problems because it requires 
the placing of force transducers between the source and the attachment points to the receiver structures. At these points, 
there are usually vibration isolators or engine mounts and the local stiffness can be significantly affected by the 
presence of the transducers, leading to poor results. In many cases, operational conditions and access limitations can 
also difficult or even impede the insertion of measuring sensors at these positions. Furthermore, multiple directions are 
frequently considered for each point (usually the three main translations are considered and rotations neglected) and the 
transducer must be able to measure them simultaneously. 



In TPA, it is considered that the total receiver response (acceleration or sound pressure) as a superposition of 
individual contributions of each transfer path. Each individual contribution is calculated as the product of the FRF by 
the operational force applied to that path. So, the determination of the FRF and the applied operational force is a 
necessary condition to assess each noise path contribution. 

 
Mathematically: 
 

)().()(
1

ωωω j

n

j
iji fHr ∑

=

=              (1) 

where: 
 

)(ωir   is the receiver operational response at point i as a function of frequency 

ijH  )(ω   is the FRF between the point i and the input signal applied to path j 

)(ωjf   is the operational force applied to path j 
 

  
2. Methods to Estimate the Operational Forces 
 

Two indirect methods to determine the operational forces will be studied. The first one is the so-called Complex 
Stiffness Method (CSM). Typically, this method is applied to problems of structure-borne noise propagation from a 
source (an engine, for example) connected via resilient mounts to the receiver structure. Each excitation direction on 
each mount is considered a noise transfer path. The technique consists in determining displacements in each direction, 
in operational conditions, on both sides of each mount. After obtaining (normally by test) the mount dynamic stiffness 
for each direction, the operational forces can be calculated multiplying the mount stiffness by the relative displacement 
of the mount on each direction. 

So, for a given path j, i.e., for a given mount and direction, the following equation can be written: 
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where: 
 

jtf̂ (ω) is the operational force transmitted to path j, estimated by the CSM 

jK (ω) is the complex stiffness of mount for the path j 

jsx (ω) is the mount displacement for the path j on the source side 

jrx (ω) is the mount displacement for the path j on the receiver side 
 
It is necessary to have simultaneous measurements of the displacement on both sides of each mount since the phase 

information is essential to obtain the relative displacements. When data are obtained experimentally, normally 
accelerometers are used for the measurements. The displacements are obtained by numerical integration of the 
accelerometer signals. 

The second method studied is the Matrix Inversion Method (MIM). This technique was developed for the use 
when the stiffness is high in the attachment points of the source to the receiver structure, leading to small relative 
displacements and inaccuracy in the force estimation by the CSM.  

The MIM is based on the so-called accelerance FRF matrix (accelerations divided by forces). To use this technique 
it is necessary to obtain the operational accelerations and the accelerance FRF for the attachment points, on the receiver 
side. Once the accelerance matrix has been determined, the equivalent forces on each path are estimated with the 
product of the generalized inverse accelerance matrix by the acceleration vector. The use of the single value 
decomposition method helps to minimize numerical problems in the matrix inversion. The inversion of ill-conditioned 
matrices is discussed by  Thite and Thompson (2003). Mathematically: 
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where: 
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 is the operational acceleration vector on the receiver side 

 

ijHa              is the accelerance FRF measured between the ith acceleration and an equivalent force  applied to  jf̂
the transfer path j 

if̂   is the equivalent force applied to the ith  path, estimated by the MIM 

[ ]+   is the generalized inverse matrix in the least-squares sense 
 

To obtain a unique solution to the operational forces, the number of measuring points (m) has to be at least equal to 
the number of forces to be estimated (n). However, redundancy of information, that is, additional response 
measurements (m>n) on the receiver side, tends to improve the results. This leads to a non-squared matrix to be inverted 
and the need of generalized matrix inversion. 
 
3. Techniques to Obtain the Frequency Response Function 
 

The FRF are of key importance to Transfer Path Analysis. They can be obtained either analytically, from a finite 
element model, or experimentally. Experimental techniques to evaluate the FRF are similar to those used in modal 
analysis. An impact hammer or a small electromagnetic shaker can be used to excite the structure with force transducers 
to measure the input forces. The response can be measured on the receiver side either with accelerometers, to obtain 
accelerance FRF, with microphones to have the acoustic FRF (sound pressures divided by forces), or with optical 
methods such as laser vibrometry, to obtain velocity or displacement. Reciprocity techniques (LMS, 2000) can also be 
used to estimate FRF with a loudspeaker placed on the receiver location and accelerometers on the source side.  

Basically, two setups can be considered to estimate the FRF. The first one is the complete system, i.e., the source 
and the receiver connected to each other. The second one, based on practical considerations, is to obtain the FRF 
without the vibro-acoustic source (removing the engine, for instance). This technique was developed because, in most 
practical applications, it is difficult to access the receiver side of the attachments of the source to measure the FRF with 
a shaker or an impact hammer. In the present work, both cases will be discussed with their interaction with the two 
indirect methods to estimate the input forces. 

 
4. Using a Lumped Parameter Model 

 
A simple 6-degree-of-freedom model has been used to compare the different techniques used to estimate the 

operational forces and the FRF aiming the application on Transfer Path Analysis. Different model parameters were 
tested and the results will be discussed. The TPA calculations will be also done with this model. Figures 1a and 1b show 
two basic configurations studied, with and without the source impedance. 

In the system, mass M1 represents the engine mass (source), where an external force f1 is applied. Mass M6 is the 
mass on the receiver place, where the response x6 is taken. Between the source and the receiver there are two possible 
transfer paths TPA (through masses M2 and M3) and TPB (through masses M4 and M5). 

In this TPA problem, the aim is to estimate the contribution of the paths A and B to the response x6 of the receiver, 
for a given force f1 applied to M1. Before applying the TPA equations and methods, it is interesting to determine the 
overall response level in order to have a baseline solution for further comparisons. So, considering the complete model 
given in Fig. 1a, the matrix equation can be written as: 
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Solving Eq. (4) for x6 leads to: 
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Figure 1a – model with source M1 present     Figure 1b – model without source M1 

 
 
5. Comparison of Methods 

 
To compare the different possibilities for applying TPA, let us first define ijH~  such as: 
 

ijij HH =~
   (when the mass M1 is present) and ijij HH =~

   (when the mass M1 is missing) 
 

Considering the CSM, the forces  and can be estimated using Eq. (2): 2t̂f 4t̂f
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For CSM, Eq. (4) becomes: 
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From this equation, the response x6 can be written as:  
 

)(ˆ)(~)(ˆ)(~)( 4642626 ωωωωω tfHtfHx ⋅+⋅=           (9) 
 
From Eq. (9), the response x6 is written as a superposition of responses due to paths A e B. These partial 

contributions, according to Eq. (1), can be written as the product of the FRF by the force transmitted to each path. The 



 

force  is transmitted to the mass M2t̂f 2 (transfer path A) and the force  is transmitted to M4t̂f 4 (transfer path B). So 
we can state that: 

 

BA TPTPx +=)(6 ω             (10) 
 
where: 

)(ˆ)(~
262 ωω tfHTPA ⋅=            (11) 

~ )(ˆ)( 464 ωω tfHTPB ⋅=            (12) 
 
Considering the MIM, the operational forces are obtained from the inversion of the accelerance FRF matrix 

according to Eq. (3). The forces can be estimated by: 
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where: 

))
22 eff =  and 44 eff

))
=  (with M1) and 22 tff

))
=  and 44 tff

))
=  (without M1) 

 

ijij HaaH =~
   (with M1)  and ijij aHa =H~    (without M1) 

 
So, the system can be solved using the matrix equation: 
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Leading to the following equation to obtain the response x6: 
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Similarly to Eq. (9), Eq. (15) is the TPA calculation based on the MIM. This two-component equation indicates the 

contribution of transfer path A and B. The response x6 can be written as: 
 

BA TPTPx +=)(6 ω             (16) 
 
Where: 
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)(ˆ)(~
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Table 1 lists the comparison of the different methods. The FRF estimated with and without M1, respectively  

and 

ijH

ijH , can be used with the two techniques to estimate the operational forces, CSM and MIM. The Matrix Inversion 
Method still has two possibilities for estimating the operational forces, either using the accelerance matrix with M1 or 
without, respectively  and ijHa ijaH . So, the total number of combinations is 6. 



Table 1 – Investigated Cases 
Case Operational Force Estimation FRF Estimation 

I Complex Stiffness Method 
ijH  

II Complex Stiffness Method 
ijH  

III Matrix Inversion Method (with ) ijHa ijH  
IV Matrix Inversion Method (with ijaH ) ijH  
V Matrix Inversion Method (with ) ijHa ijH  
VI Matrix Inversion Method (with ijaH ) ijH  

 
From the cases proposed in Tab. 1, cases V and VI can be discarded since they are incompatible for practical 

reasons. It is not reasonable, although theoretically possible, to perform a TPA by estimating the force in the presence 
of M1 (using ) and the FRF in its absence (using ijHa ijH ) and vice versa. So, the comparison of the methods will be 
performed for the remaining four cases. 

In order to test the techniques described above, the following values were assumed for the system shown in Fig. 1a: 
 

M1=100 kg 
M2=10 kg 
M3=30 kg 
M4=50 kg 
M5=50 kg 
M6=200 kg 

K1=40 kN/m 
K2=1000 kN/m 
K3=1000 kN/m 
K4=450 kN/m 
K5=1000 kN/m 
K6=5000 kN/m 
K7=50 kN/m 

C1=40 Ns/m 
C2=10 Ns/m 
C3=20 Ns/m 
C4=100 Ns/m 
C5=25 Ns/m 
C6=25 Ns/m 
C7=40 Ns/m 

 
To compare the different cases, the exact solution of the complete system was used as baseline, considering the 

displacements x1, x2, x3, x4 and x5 for the force f1. The force f1, applied to M1, was assumed to be constant in the 
frequency range from 0 to 500 Hz with a magnitude of 10N. A MATLAB code was written to run the different cases 
listed in Table 1. 

 

 
 
 

 
Baseline                                 Case I (with M1)   .................        Case II (without M1)    

Figure 2 – Results using the complex Stiffness Method 
 



 
 

 
 
 
 

Baseline                                 Case III (with M1)      .................       Case IV (without M1) 

Figure 3 - Results using the Matrix Inversion Method 
 

Figures 2 and 3 indicate, respectively, the results obtained with the MATLAB code for the Complex Stiffness and 
the Matrix Inversion Method. Figure 2 indicates that, when CSM is used with the source removed from the system, the 
exact solution is achieved, coinciding with the baseline. The presence of the source (M1) leads to a slightly different 
result at low frequencies. Figure 3 shows that, in MIM, the best results are obtained with the source present. A poor 
estimation is observed when the source is removed. 

So, in the CSM, one can conclude that the estimated forces  and  represent exactly the transmitted forces to 

the paths TP

2t̂f 4t̂f

A and TPB. That is equivalent to a system without the mass M1 and with external forces  and acting 

on the masses M
2t̂f 4t̂f

2 and M4. Thus, using the CSM, the exact solution is obtained when 62
~H  and 64

~H  are calculated 
without the source mass M1. In other words, the presence of M1 implies in considering the mechanical impedance of 
the source in the estimation of the FRF, although this impedance was already taken into account when the transmitted 
forces were estimated. 

In the calculation with the MIM, by Eq. (13), one can verify that the transmitted forces depend on the FRF matrix, 
[ ijaH~ ]. Additionally, the calculation of the transfer paths themselves is also dependent upon the FRF matrix, [ ijH~ ], 
according to Eq. (14) and Eq. (15). Therefore, the calculation is more accurate with the complete system, i.e., with the 

source impedance included. In the absence of the source, both forces  and FRF jf̂ ijH~  in Eq. (15) are not estimated 
properly, affecting the final calculation of the transfer paths. 

The conclusion is that case II (source absent) for the Complex Stiffness Method and case III (source present) for the 
Matrix Inversion Method lead to the best results in the TPA calculation. 
 
6. Consideration on the Source-Receiver Impedance Matching 
 

Mechanical impedance is defined as the complex ratio of force to velocity (Hynnä, 2002). In the lumped system 
indicated in Fig. 1, the mechanical impedance of the source will be directly proportional to the source mass M1, to the 
stiffness coefficients K1 and K4 and to the damping coefficients C1 and C4. The stiffness and damping coefficients form 
the interface between the source and the receiver. Changing these parameters will affect the so-called impedance 
matching between the source and the receiver. In the present case, impedance mismatch will occur when these 
parameters are set to very small values and good matching will be achieved with high values of them. 



To check how the impedance match/mismatch can affect the estimation techniques listed in Table 1, the MATLAB 
program was run with stiffness K1 varying from 0.004 to 400,000 kN/m, and K4 varying from 0.045 to 4,500,000 kN/m, 
for cases I to IV. The comparison of the results obtained with the baseline is listed in Tab. 2. 

 
Table 2 – Comparison of the Estimation Techniques with the Impedance Matching 

Estimation Technique Impedance Matching  
 

Case 
Operational Force FRF Low K1 and K4 Medium K1 

and K4 
High K1 and 

K4 
I CSM 

ijH  good fair poor 

II CSM 
ijH  good good good 

III MIM (with ) ijHa ijH  good good good 

IV MIM (with ijaH ) ijH  poor poor poor 

 
 

According to Table 2, one can infer that the best estimation techniques previously discussed, cases II and III, are 
independent of the impedance matching between the source and the receiver. This means that both cases are not 
affected by the interface parameter values and can be applied to any attachment condition, i.e., from rigid to resilient 
connections between the source and the receiver. Case IV gives poor results for any attachment condition and should be 
discarded. Case I leads to good results only if there is a reasonably high impedance mismatch between the source and 
the receiver and can be used only when this condition is satisfied. 
 
7. The Effect of Coupling between the Paths 
 

In the simplified model used to test the different techniques, no coupling was assumed between the two transfer 
paths. In practical situations however, coupling can occur among paths and the energy can flow from one path to 
another before the energy reaches the receiver. The best techniques (cases II and III) are tested for different couplings 
between the two paths. Starting from the same model shown in Fig. 1, a spring and a damper are attached between M3 
and M5. Varying K and C of this attachment from zero to higher values, the effect of weak and strong coupling between 
the two paths can be simulated. The MATLAB code was adapted to run these cases. 

The conclusion is that the results are independent of the coupling between paths for both methods. 
 
8. Concluding Remarks 
 

When applying TPA, forces and FRF should be measured. The direct measure of exciting forces is not possible in 
most cases and indirect methods to estimate the forces should be used instead. Two methods were presented in this 
paper, the Complex Stiffness Method and the Matrix Inversion Method. 

With the source (e.g. the vehicle engine) removed, CSM gives more accurate results. On the other hand, with the 
source installed, MIM is preferable. In the latter case, CSM can be only used if there is a high impedance mismatch 
between the source and the receiver. Both methods are not affected by a higher or lower degree of coupling among the 
transfer paths. 
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