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Abstract: The Reynolds’ hydrodynamic theory used for journal bearings can be extended to other components that 
work in a similar way in rotating machinery. Some of those components have a deformed circular shape, due to 
installation distortions, or due to external forces at the operation, predicted or not during the design stage. The 
changes in the geometry of these components can influence the dynamic behavior of a rotating machine, thus a model 
that allows simulations of that type of fault is proposed. With a small modification during the development of the 
equations of plain journal bearings, it is possible to obtain a mathematical model that determines the pressure 
distribution, including the imperfections in the bore of the component. Observing the modifications that appear in the 
pressure field, and comparing to the perfectly circular case, it is possible to evaluate the deformed configuration of the 
ring, relating the pressure gradients to the convergence and divergence regions in the lubricant flow. The pressure 
data acquisition in the time domain, measured in different positions along the circumference of the ring, can be used to 
evaluate the excitation due to the dynamic forces caused by the pressure field. An analysis of these signals in the 
frequency domain may reveal other characteristics of the excitation.  
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1. Introduction  
 
The monitoring and diagnosis of rotating machinery are of extreme importance to ensure the safe and reliable 

operation of the equipment. The rotordynamic modeling play a significant role in the field–diagnostics approach. 
Hence, a detailed study of rotordynamics demands accurate knowledge of mechanical elements that support the rotor, 
such as bearing, seals and dampers. The knowledge about hydrodynamic components is then required to the 
development of adequate models for fluid forces acting on rotor, allowing an accurate study of these machines behavior. 

In this work, a model is proposed to evaluate the geometric condition of a hydrodynamic component by measuring 
the pressure of the fluid. First a mathematical model based on the hydrodynamic theory used in journal bearings is 
developed. This model includes geometry deviations of the circular shape of the component. Some computer 
simulations are done to evaluate how these geometric changes affect the pressure generated in the fluid film. At the end 
some considerations regarding turbulent flow are presented.  

Figure 1 schematically depicts a region of a power generator turbine where a deformed ring is located. Between the 
stationary and the rotating ring there is a fluid flow combining hydrodynamics with a forced axial flow. The work 
presented here will not account for this axial flow. 
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Figure 1. Detail of a power generator turbine 

 
2. Mathematical Model. 

 
In hydrodynamic fluid film bearings there is relative motion between two mechanical surfaces with a particular 

wedge shape. The fluid dragged due to the journal rotation is led to a convergent gap and hydrodynamic pressures able 
to support an externally applied load are generated. The development below describes the classical way to calculate the 
pressure generated in journal bearings. 

 
2.1. Journal Bearing Model: Reynolds` Equation 

 
The pressure p in the lubricant film of a journal bearings, as the illustrated in Fig. 2, is governed by the Reynolds 

equation, which is a simplified version of the Navier-Stokes equation and represents the conservation of mass across the 
film thickness. For such derivation some hypotheses must be made.  

 
• The lubricant is an isoviscous, incompressible, Newtonian fluid.  
• The curvatures of the surfaces can be neglected if compared to the film thickness (H).  
• The film thickness is very small in comparison to the bearing circumference and length so that the pressure may be 

considered uniform in the y direction. 
• The fluid adhere to the surfaces (non-slip condition).  
• The flow is laminar and the inertia effects can be neglected 
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Figure 2. Geometry of a plain journal bearing 

 
Equation (1) is the Reynolds equation for classical lubrication theory, written in circumferential coordinates where  

ω  is the speed of rotation of the shaft, µ is the lubricant viscosity,  r is the shaft radius, t it is the time and θ is the 
angular coordinate relative to the referential XY fixed on the bearing.  
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There is no analytical solution for Eq. (1), even if the bearing is perfectly circular. Numerical methods, as presented 
by Allaire et al (1977) and Childs (1993), have been employed for the direct solution of the Reynolds equation for 
various types of bearings. Some approximate solution have been used for quick estimations and one of them is 
presented in the following subsection. 

 
2.2. The Ocvirk Solution (Short Bearing) 

 
Some good approximate analytical solutions can be obtained if one of the terms on the left side is neglected. To 

decide which of the terms is dominant, the ratio between the shaft diameter (d) and the bearing length (L) must be 
evaluated. To evaluate this ratio influence in such approximations, the Reynolds equation is re-stated in terms of the 
following dimensionless variables:   
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where cr is the radial clearance. 
Substitution of Eq. (2) in Eq. (1) yields the following restatement of the Reynolds equation, where the ratio L/d 

appears in evidence in the first term.  
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Equation (3) demonstrates that the first term on the left become dominant for very long bearings. That means that 

the pressure gradient in the axial direction is very small if compared to the circumferential pressure gradient. On the 
other hand, for small L/d ratios, the first term becomes negligible.  In this case the oil flow in the axial direction is much 
greater than in the circumferential direction. 

Therefore, two different analytical solution for the Reynolds equation are possible. One for long bearings, known as 
Sommerfeld solution, and one for short bearings, known as Ocvirk solution. As most of the hydrodynamic components, 
specially bearings (Vance, 1988), fit the second case, this will be the chosen for the further development of the model. 
As mentioned by San Andres (2000), surprisingly good results are obtained with that approach as long as the ratio 
remains smaller than 0,5. Besides, the journal eccentricity should not be greater than 70% of the of the radial clearance 
value. The pressure field is obtained by  integration of Eq. (4).  
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Usually it is assumed that the pressure on the sides is the ambient pressure, and its maximum value occurs in the 

middle plane. The use of this information as boundary conditions for the integration leads to the following expression  
for the pressure field.  
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The pressure field given by Eq. (5) is function of the film thickness (H) and its gradients. An expression for H is 

then necessary to calculate the pressure field.. From this point on, considerations regarding the geometry of the bearing 
or external ring lead to a slightly different analysis from that of classical lubrication theory.  

 
2.3. Non-Circular Bearing Model 

 
Considering a ring or a bearing with a deformed surface, a model where its bore is a function of the circumferential 

coordinate can be proposed. Hence, an expression for the ring bore (R) can be defined as written in Eq. (6). 
 

( ) ( )θθ fRR += 0  (6) 
 

where f(θ) is an arbitrary function that represents the surface irregularity, and R0 is the nominal radius.  



ω

e

r

φ
R

r+H

R0

X

θ

Y

 
 

Figure 3. Geometry of a deformed ring 
 

The irregularity function must be smooth to avoid sudden contractions or enlargements. These abrupt changes in the 
film thickness cause pressure drops or rises due to inertia effects. As stated before, these effects are not included in the 
model. 

The film thickness can be calculated from the hatched triangle on Fig (3), defined by the eccentricity (e), and the 
sides R and (r + H). The application of the cosine rule of triangles gives:  

 
( )222 cos2 HreRRe +=++ φ  (7) 

 
Where φ is the angle measured from the location of maximum film thickness.  
Substitution of Eq. (7) in Eq. (6) yields:  
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Conveniently, the ring nominal radius is defined as the shaft radius added to a nominal radial clearance (cr), as stated 
by Eq. (9).  

 
rcrR +=0  (9) 

 
The ratio between the radial clearance and the shaft radius is usually very small. Thus, after substitution of Eq. (9) 

into Eq. (8), the second-order terms involving cr and the other variables of the same order (e, H, f) can be discarded, 
yielding:  

 
φcosefcH r ++=  (10) 

 
Equation (10) represents the film thickness as the difference between the ring an the shaft radius (R-r), expressed by 

the first two terms, combined to the location of the shaft center, as already expected. It can also be  noticed that the 
thickness is function of an angle based on a non-stationary coordinate system. For convenience, a change to a referential 
fixed in the center of the ring is done. From Fig. (2), it is possible to write the following relationship of the angular 
coordinates, where β is the journal attitude angle with respect to the X axis.  

 
θβπφ +−=  (11) 

 
Substitution of Eq. (11) in Eq. (10) yields:  
 

( )βθβθ sensencoscos +−+= efcH r  (12) 
 

The eccentricity components relative to the X and Y directions of the fixed coordinate system are:  
 

βcoseeX =  (13) 
 

βseneeY =  (14) 
 



To perform the simulation, it can be considered that the journal motion is synchronous, as if driven by unbalance, 
and the eccentricity e has a constant value. Then, the attitude angle β  is equal to ωt. However, there is no impediment 
to simulate other types of motion.  

Finally, substitution of Eq. (13) and Eq. (14) in Eq. (12) yields the expression that determines the thickness of the 
fluid layer in relation to the fixed coordinates:  

 
( ) ( ) ( ) ( ) θθθθ sencos, tetefctH YXr −−+=  (15) 

 
To complete the statement of the pressure field expression, the gradients of the film thickness are necessary:  
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Substitution of Eq. (15), Eq. (16) and Eq. (17) into Eq. (5) gives the expression that determines the pressure field: 
 

( ) ( ) ( )
( ) 





−













−−+
′++−−

=
4sencos

cos2sen2
3,,

2
2

3

L
z

eefc

feeee
tzp

YXr

XYYX

θθ
ωθωθωµθ

��

 (18) 

 
The pressure field expression is almost the same as the presented by Kirk and Gunter (1976). The only difference is 

the introduction of the term with the irregularity function. From Eq. (18) some important observations can be made. 
When the ring is perfectly circular the pressure will be null if the journal is centered within the ring, i.e., e = 0. 
However, for the ring with deformed geometry, even if the eccentricity is null, pressure will be generated. 

 
3. Computational Results 

 
To illustrate the pressure field behavior due to the irregularities some computational results are presented in this 

section. The simulations performed consider only synchronous motion of the journal when not centered. In all 
subsequent simulations the pressure will be evaluated at the middle plane of the ring, i.e., z = 0. The data used in the 
simulations are given in Tab. 1. 

 
Table 1. Parameters for the simulations 

Journal angular velocity (rpm)  480 
Nominal radial clearance (mm)  2 
Length of the ring (mm)  200 
Viscosity of the lubricant (Ns/m2)  0,04 

 
In the first simulation presented, an irregularity function that creates only some local deformations is employed, as 

defined by Eq. (19). The constants A and k1 are chosen to adjust the form an frequency of irregularities. In this first  
case A = 0,1cr and k1 = 4 
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Figure 4. Ring deformation and pressure distribution 

 
Figure 4 depicts the geometry of the external ring and the pressure field generated when there is no motion of the 

journal’s center, i.e., the eccentricity is null. Note that the pressure rises in the convergent areas and drops along the 
divergent ones. 

 

 
 

Figure 5. Pressure distribution  
 

Including the journal synchronous motion, the pressure has a different value at each time instant. The graph 
presented in Fig. 5 is the combination of the pressure of Fig. 4 with the result that is obtained for plain journal bearings.  

At the following simulation Eq. (20) is applied to describe irregularities along the whole [0, 2π] domain.. The 
parameters used for this function were: A = 0,1cr, a = 0,5, b = 0,2, k1 = 1, k2 = 9, k3 = 5. 

 
( ) ( ) ( ) ( )( )θθθθ 321 cossencos kbkkaAf +=  (20) 
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Figure 6. Ring deformation and pressure distribution 



The results obtained with this function are qualitatively similar to those of the previous case, as observed in Fig. 6 
and Fig. 7. The importance of these results is to show the agreement with the classical lubrication theory, and how the 
non-circular ring produces significant differences in the pressure distribution. 

 
Figure 7. Pressure distribution 

 
The pressure variation at three different locations of the ring for this last case, representing a possible measurement 

with transducers positioned in its circumference, is presented in Fig. 8. The acquisition of these signals is important to 
detect the behavior of the dynamic forces caused by the pressure field.  
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Figure 8. Pressure variation in three locations of the ring 

 
An analysis of these signals in the frequency domain, as shown in Fig. 9, may reveal other harmonics that compose 

the excitation. As the integration of the pressure distribution yields the force acting on the rotating shaft, these force 
components may be introduced on a rotordynamic model in order to perform simulations to analyse the machine 
behavior  under these conditions. 

 

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

x 104 θ = 60º

frequency [Hz]

P
re

ss
ur

e 
[P

a]

 
Figure 9. FFT of a pressure signal 

 
4. Turbulent Flow Effects. 

 
As mentioned on section 2, one of the hypotheses made during the statement of the Reynolds equation pointed out 

the laminar nature of the flow. Depending of the fluid viscosity and of journal rotation speed the flow may be turbulent 



and this effect must be taken into account. As shown by Childs (1993), and Allaire et al (1985), it is possible to model 
the effects of the turbulence with a modified Reynolds equation, according to Eq. (21).  
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where  
 

( ) 190,00136,012
−

+= eRGθ  , ( ) 196,00043,012
−

+= ez RG ,  HrRe µ
ρω=  

 
This modification is based on eddy viscosity effects, through the addition of the parameters Gθ  and Gz, that are 

functions of the local Reynolds number. Hence, the quotients µ /Gθ  and µ /Gz  may be viewed as effective local 
viscosities. Note that for small Reynolds numbers (Re), Eq. (21) reassumes the form of Eq. (1).  

Applying the same procedure of the Ocvirk solution to Eq. (21) the resultant pressure field is given by:  
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Eq. (22) doesn't differ a lot of that obtained with laminar-flow formulation. In fact, the turbulent flow correction 

modifies only the magnitude of the pressure field. 
 

5. Conclusions  
 

The model proposed to identify deviations of the circular geometry in a hydrodynamic component seems to be 
coherent with the presented theory. The results presented are more qualitative and intend only to associate the pressure 
generation mechanism to the geometry of the component. The knowledge of how the pressure is distributed along the 
deformed component allows a comparison to the original one and then the geometry changes can be located. 

The identification of the real geometry of the component requires a more sophisticated model, using numerical 
methods as FEM and CFD. Other effects, as axial flow and inertia effects, must also be taken into account to create a 
more complete and reliable model. Experimental data should also be taken to validate the model and verify the 
agreement of the numerical results. 
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