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Abstract. This work describes the application of the output-error method using the Levenberg-Marquardt optimization 
algorithm to the Flight Path Reconstruction problem, which constitutes an important preliminary step towards the 
aircraft parameteridentification. This method is also applied to obtain the aerodynamic and control derivatives of a 
regional jet aircraft from flight test data with measurement noise and bias. Experimental results are reported, 
employing an EMBRAER aircraft, with flight test data acquired by smart probes, inertial sensors (gyrometers and 
accelerometers) and GPS receivers.   
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1. Introduction  
 

Modeling and simulation has become an integral part of the aeronautical industry design and evaluation processes. 
One of its major parts is system identification and parameter estimation applied to complex aerodynamic systems such 
as airplane. This work focuses the system identification process which is a general procedure to match the observed 
input-output response of a dynamic system by a proper choice of an input-output model and its physical parameters. 
From this point of view, the aircraft system identification or inverse modeling comprises proper choice of aerodynamic 
models, the development of parameter estimation techniques by minimization of the mismatch error between the 
predicted and the real aircraft response. Another focus of this work is the problem of Flight Path Reconstruction (FPR) 
which arises naturally when the main goal is an accurate identification of the aircraft parameters, because, in this case, 
the proper characterization of the flight sensors constitutes a fundamental preliminary step. For example, if the bias of a 
certain sensor is not adequately estimated, the accuracy of the ensuing parameter identification may be degraded. 

The FPR is especially useful in the validation of the instruments applied in a prototype. The interpretation of the 
results can furnish important information with respect to sources of problems. Additionally, it decreases the 
uncertainties about the quality of data, which is one of the main causes of poor flight tests results. One of the first 
approaches for FPR may be found in (Jategaonkar and Plaetscke, 1989). In this work, the FPR problem is investigated 
by parametric identification of a nonlinear model, based on output-error method and Levenberg-Marquardt algorithm. 
The results are reported for an EMBRAER aircraft, considering 28 parameters and 6 outputs, and comparing the 
calibration results obtained with those determined by traditional methods. The identification method used in this work, 
based on the optimization algorithm of Levenberg-Marquardt is of the output-error type, which is susceptible to process 
noise. However, this approach is justified in the present case, since the noise is not large and because the methods 
presented in (Klein and Schiess, 1977) and (Mulder et al, 1999) could lead to incorrect results: the EKF could mask 
instrumentation errors, mainly those arising from inadequate compatibilization between the INS and GPS coordinates. 

This work is structured as follows: in the first part, the kinematics model for FPR and the lateral-directional model 
for parameter estimation are presented. In section 3, the parametric estimation method is described with special 
attention to the Gauss-Newton and Levenberg-Marquardt algorithms. The experimental results obtained in the FPR 
problem and parameter estimation are analyzed in section 4. 
 



2. Aircraft Models 
 
2.1. Kinematic model for FPR 
 

The equations that constitute the kinematics model of an aircraft can be grouped in 3 sets of first-order differential 
equations, providing translational velocities, angular velocities and attitude angles. Using the standard body-fixed 
reference frame F_B, the equations for the components u,v,w of true air speed V along the body axes X_B, Y_B and Z_B 
are: 
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where p, q e r denote the rates of rotation about the axes of F_B; ,θ φ  denote pitch and roll angle, respectively; m 
denotes aircraft mass and g denotes the local acceleration due to gravity. X, Y and Z represent the components of the 
total aerodynamic force, including the aerodynamic effects of propulsion systems. 

For an aircraft with a geometrical plane of symmetry, the rotational dynamics are given by, 
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where L, M, N denote the total aerodynamic moments, including any aerodynamic effects of the propulsion system; I_x, 
I_y and I_z denote the moments of inertia and I_xz the only non-zero product of inertia in F_B (due to symmetry). 

The  orientation of F_B with respect to the earth-fixed vertical reference frame F_E is governed by the following 
equations for the Euler angles , ,φ θ ψ . 
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To integrate the equations (1) and (3), it is necessary to determine X, Y, Z in (1). This is done assuming that these 

accelerations are measured, giving. 
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in which a_x, a_y e a_z denote the specific aerodynamic forces along the body axes X_B, Y_B and Z_B, respectively. 

By replacing (4) into (1) and dividing by m leads to 
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Once mass m (or any other physical properties) has been eliminated from equations (5) and (3), these equations can 
be integrated. More precisely, the solution of these equations can be obtained using the acceleration components (a_x, 
a_y, a_z) and the angular rates (p, q, r) as input variables, since they are measured by sensors installed on the aircraft, 
which are part of the inertial system. It is precisely the measure of these components that allow the realization of the 
FPR before the parameter identification of the aircraft is carried out. 

Aiming to use GPS readings (geographical coordinates), we must characterize the position of the aircraft relative to 
the earth-fixed reference frame. To improve the quality of this signal, it was used the differential technique, namely the 
DGPS. This position is obtained from (5) and (3), through the relation.  
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where L_EB denotes an orthogonal matrix of reference frame transformation, determined by the roll, pitch and yaw 
angles.  The three vectors that form this matrix are 
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W_X_E, W_Y_E e W_Z_E in (6) denotes the components of a constant atmospheric wind vector W_E along the axes of 
F_E. 

To summarize, the aircraft motion can be described by the nonlinear model (5), (3) and (6), which can be rewritten 
in the form 
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with state and input vectors given by 
[ ]
[ ] 6

9

ℜ∈=

ℜ∈=
T

zyx

T
EEE

rqpaaa

zyxwvu

u

x ψθφ
    (11) 

 
Basically, the observation models take the form of nonlinear algebraic relations between the observed variables and 

the state and input vector components. In this work the models are derived for observations of true air speed V, angle of 
attack α , side slip angle β  and geographical position measurements. 

True air speed V_T can be derived from differential and absolute barometric and temperature transducers, resulting 
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where K_v is a scale factor and TV∆ the bias term. By definition, V_T is the absolute value of the resultant of the air 
velocity components u, v e w along the axes of F_B,i.e., 
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Also by definition, the angle of attack and the side slip angle are given by, respectively,  
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These values differ from the measured angles, due to many effects, like velocities induced by aircraft rotational 

motion and modification of the air flow due to disturbs of the air near the aircraft, resulting the following measurement 
equations 
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where Kα , K β

α  and Kβ  are scale factors, α∆ and β∆ denote bias terms and the parameters xα , xβ , yα  and zβ  denote 
the position of the sensors. More details can be found in (Mulder et al, 1999). 

Finally, the geographical coordinates are obtained by DGPS. Therefore, the observation model takes the form 
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where Ex∆ , Ey∆  and Ez∆  denote bias terms. 

Based in (12), (15) and (16), the observation vector is defined as 
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From equations (5), (3), (6), (12), (15)-(17), and adding bias terms in the measurements of accelerations and angular 

velocities, the following dynamic model is obtained: 
 
state equations: 
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control signals: 
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output signals: 
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where the last terms in (22) stand for sensor noise. 

In the dynamic model given by (20)-(22), the parameter vector  to be estimated is formed by 28 components, namely 
 

Θ =[ xa∆ , ya∆ , za∆ , p∆ , q∆ , r∆ , α∆ , β∆ , aaK , βαK , βK , TV∆ ,
TVK , xEW , yEW , zEW , Ex∆ , Ey∆ , Ez∆ , 

 u(0),v(0),w(0),φ (0),θ (0),ψ (0), Ex (0), Ey (0), Ez (0) ]                                                                    (21) 
 

where the last 9 terms in (21) denote initial conditions of the state vector in (11). 
Therefore, from equations (20)-(21) we conclude that the FPR constitutes a parametric identification problem 

applied to a dynamic system of the form, 
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2.2. Dynamic model of lateral-directional movement of aircraft 
 

The aircraft dynamic system is described by a stochastic nonlinear hybrid model in the form of eq. (23). In this 
section the inverse problem formulation is applied to the lateral-directional movement of the aircraft, for which the 
linear state and output equations can be written as, 
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Equation (25) has 14 unknown parameters that need to be estimated, i.e., 
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As usually formulated in the aeronautical literature, the components of the parameter vector, are the dimensional 

aerodynamic derivatives, which in turn can be written in term of non-dimensional coefficients by proper choice of flight 
parameters, all assumed known a priori. More details about this conversion can be found in (Góes et al, 2004). 
 
3. Parametric estimation method 
 

In this section, the parametric identification, in particular the parameter estimation applied to a linear causal model 
of an aircraft, in space state formulation according to eq. (23). The output-error method is one of the most used 
estimation methods in aircraft identification and aerodynamic parameter estimation (Maine and Iliff, 1985). It has 
several desirable statistical properties, including its application to nonlinear dynamical systems and the proper 
accounting of measurements noise (Maine and Iliff, 1986). 

The structure of the model is considered to be known, and the identification process consists in determining the 
parameter vector, which gives the best prediction of the output signal y(t), using some sort of optimization criteria. The 
attainment of an estimate through optimization of a cost function based on the prediction error of the plant requires, 
usually, the minimization of a nonlinear function. Thus, the Levenberg-Marquardt method is used here to estimate the 
parameters in model (25). Therefore, the cost function to be minimized involves the prediction error, 

 
ˆe(k 1, )  y(k 1) y(k 1, )+ Θ = + − + Θ      (27) 

 
where ŷ(k 1, )+ Θ  is the output prediction based on the actual estimate of the parameter vector. 
             
 
3.1. Maximum Likelihood Estimation criteria 
 

Consider a dynamic system, identifiable, with model structure ( )M Θ defined and output y. Suppose that ( | )p y Θ  is 
the conditional probability gaussian distribution of the random variable y with dimension m, mean ( )f Θ  and 
covariance TFF , with dimension m x m. ( | )p y Θ  is known as the likelihood functional, and in (Goodwin and Payne, 
1977) the authors attribute its name due to the fact that it is a measure of the probability of occurrence of the 
observation y for a given parameter Θ . The Maximum Likelihood Estimate is defined as the value of Θ  which 
maximizes this functional, in such a way that the best estimate of Θ , according to the MLE criteria is. 
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whose maximization is equivalent to the minimization of 
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since, in the optimization process, ( )J Θ  is equivalent to ln( ( | ))p y− Θ , except for a constant term. 
 
3.2 Minimization of the cost function by Levenberg-Marquardt 
 

The identification algorithms based on the Gauss-Newton method is of second order. This method, although 
complex, is suitable for a quadratic cost function, and is expected to converge quickly. First, we approximate ( )J Θ  by a 
parabolic function  (retaining only the 3 first Taylor series terms), 
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The optimization condition is obtained when, 
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which can be used to find the minima of the original cost function through the recursion, 
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The complexity in the calculation of the Hessian matrix, in (33), is avoided through the Gauss-Newton method, 

which uses the approximation, 
12

1

ˆ ˆˆ ˆ( ) [ ( )] ( )
k k

n
T T

k

J y FF y
−

Θ Θ Θ
=

⎡ ⎤ ⎡ ⎤∇ Θ = ∇ Θ ∇ Θ⎣ ⎦⎣ ⎦∑     (34) 

 
where the terms involving the second derivative are discarded. The gradient of the estimated output, is called Sensibility 
Function. 

The Levenberg-Marquardt algorithm is an extension of the Gauss-Newton. The idea is to modify 2 ( )JΘ∇ Θ  to 

2 ( )J IλΘ⎡ ⎤∇ Θ +⎣ ⎦ , where the inversion of the matrix is not done in a explicit way, but solving by  SVD the following 

expression 

2 ˆ( ) ( )T
iJ I JλΘ Θ⎡ ⎤∇ Θ + ∆Θ = ∇ Θ⎣ ⎦                                       (35) 

 
The inclusion of Iλ  in (35) solves the problem of an ill conditioned approximated Hessian. The Levenberg-

Marquardt algorithm can be interpreted in the following way: for small values of λ  it behaves like the Gauss-Newton 
algorithm, while for high values of λ  it behaves like the gradient method. More details about the Levenberg-Marquardt 
method can be found in (Press et al, 1990). 
 
4. Experimental results 
 
4.1. Flight path reconstruction 
 

A flight test was performed and data was gathered with sampling time T=0,09s. The input signals relative to this 
maneuver are shown in figures 1 and 2, containing the accelerations and angular velocities, respectively. These signals 
are referred to the control signal u in eq. (23). The vertical scales are omitted. 

 



 

 
Figure 1. Acceleration measurements of the maneuver employed. The horizontal 

scale is given in multiples of sampling time T. 
 

 
Figure 2. Angular velocities measurements of the maneuver employed. The 

horizontal scale is given in multiples of sampling time T. 
 
Based on the input signals indicated in figures 1 and 2 and in the measured variables according to the output vector 

(22), the identification algorithm was used to determine the parameter vector containing the 28 parameters indicated in 
eq. (21). The identification algorithm was executed many times, aiming to investigate the influence of the design 
parameters. The influence of the integration method used to solve the state equation (20) was also investigated, 
concluding that the Euler method is not suitable, but the 4th order Runge-Kutta method produces adequate results. 

After executing the identification, we must evaluate its performance. The first quality measure is the mean square 
prediction error. The plots of these errors in the present case indicate small values, and these plots are omitted, except 
for the air speed, which is shown in figure 3. The relative vertical scale indicates a total range of 6 m/s. Hence, the 
difference between the measured and the predicted values of air speed is small. 

Next, it is considered the main performance measure here, the comparison of the estimated values with those 
obtained by EMBRAER via traditional procedures. Two of these variables are considered here: the angle of attack and 
the side slip angle.  In figure 4 is presented the relative values of angle of attack. Three plots compose figure4: the 
values measured by the aircraft sensors, the values calibrated by Embraer through traditional procedures, and the values 
calibrated by the method proposed in this paper. The vertical scale omits the absolute values of the angles, but presents 
the total variation. 

 



 
Figure 3. True air speed: measurements and prediction. 

 

 
Figure 4. Measured and calibrated values for the angle of attack. 

 
Based on figure 4, we conclude that the procedure proposed here for the flight path reconstruction presents results 

compatible with that obtained via the techniques employed by EMBRAER. 
 

4.2. Matching of flight test data for lateral-directional movement 
 

The aerodynamic derivatives associated with the lateral-directional model, as shown in eq. (25), were estimated by 
matching the real flight test data with the model predicted simulation. A dutch-roll maneuver of a regional transport 
aircraft was used to investigate the effectiveness of the discussed output-error method (the Levenberg-Marquardt), 
applied to estimate the aerodynamic parameter vector. 

The aircraft input signals are the aileron and rudder deflections , and the output signals are five attitude parameters: 
sideslip angle, roll rate, yaw rate, bank angle, and lateral acceleration. The experimental input signals are shown in fig. 
6 and the output signals are shown in figs. 7 to 10, represented by the red lines.  The time history of the aircraft input-
output relationship was measured with a sampling time of 0.0312 s, and the 914 measured points gives an observation 
time window of approximately 28 s. Table 1 shows the final values of the non-dimensional aerodynamic derivatives 
obtained by the Levenberg-Marquardt algorithm. We use the values achieved by the Nelder-Mead method to initialize 
the Levenberg-Marquardt algorithm, since this method is more computationally demanding and a good initial estimate 
can speed up its convergence. A maximum likelihood cost was used, in which case the weighting factor was the 
estimated covariance matrix associated to the prediction errors.  

 
 
 
 
 
 



 
Table 1 – Parameter Estimation of the Aerodynamic and Control Derivatives 

 
 Initial 

Parameter 
Value 

Nelder-Mead 
Algorithm 

Levenberg-
Marquardt 
Algorithm 

βCY  -0.0068 -0.0077 -0.0058 

βCL  -0.1861 -0.1821 -0.1514 

pCL  -0.3562 -0.3272 -0.4718 

rCL  -1.1700 1.6393 1.4942 

βCN  0.0678  0.0644 0.0415 

pCN  0.0616 0.0538 -0.0275 

rCN  -2.7110 -1.2157 -0.6765 

aCYδ  0.0068  0.0099  0.0052 

rCYδ  -0.0068 -0.0079 -0.0073 

aCLδ  -0.0001 -0.0032 -0.0029 

rCLδ  -0.0198 0.0623  0.0704 

aCNδ  0.0016 0.0023 -0.0405 

rCNδ  -0.2037 -0.1147 -0.1029 
 

 
Since the flight data employed to generate Table 1 was obtained experimentally and no wind tunnel tests are 

available, an indirect measure of performance is used, based on the prediction error. So, the main focus of the present 
inverse aerodynamic modeling is to check that this local minimization procedure can provide good matching to the 
experimental flight data and stable input-output modeling for the aircraft. This prediction capability, as obtained by the 
output-error method, can be accessed from the model validation results shown in figs. 7 to 11, where the estimation 
error are small for most of the output variables. 

 

 
Figure 6. Aileron and rudder deflections for the dutch-roll maneuver.  



Figure 7. Measured side slip angle and estimated values.  
 

Figure 8. Measured roll angular rate and estimated values. 
 

 
Figure 9. Measured bank angle and estimated values. 

 
Figure 10. Measured and estimated acceleration values. 

5. Conclusions 
 

Based on the small prediction error and good agreement between the calibrated values, we can conclude that the 
proposed procedure for FPR, based on parametric identification via optimization using the Levenberg-Marquardt 
method, exhibited satisfactory performance. Thus, the proposed procedure can be added to the repertory of FPR 
techniques and constitute a relevant alternative for practical applications. This work also presented the estimation of 
aircraft linear aerodynamic derivatives, which presented good convergence properties and good matching to the 
experimental flight data. The results obtained with the Levenberg-Marquardt algorithm demonstrate the feasibility of 
the method. 
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