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Abstract: Non-stationary balancing methods collect the measurenbagiat during run-up or run-down processes. During the natishary measu-
rement run, the rotor passes a broad speed band in which #temsyproperties can significantly change due to speed-depémyyroscopic effects
and journal bearings. In this article it is shown that the tgpelate non-stationary balancing methods yield good tedubth with time domain and
frequency domain identification although they assume aohsystem properties within the whole range of rotor sp&tis is shown by means of a
rotor with journal bearings, whose natural frequencies iega up to 10 % within the range of rotor speed passed througimglimeasurement and
whose damping coefficients decrease until instability. pitesof these substantial system changes during the meaeatethe modal unbalances
for the passed frequency range were identified with an erf& @ 20 %. In fact, the algorithms determine the constanti@slwhich overall best
approximate the varying true parameters.
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Introduction

In the industrial practice, flexible rotors are balancedgghe modal or the influence coefficient method. Traditipnddoth
methods require many time consuming test runs with constéational speeds. In order to shorten the balancing proegtb improve
the balancing results and to limit the rotor amplitudesmiyithe test runs, methods have been developed that useatmmaty run-up
or run-down processes for unbalance identification (Mayke&84; Markert, 1988; de Silva, 1991; Seidler and Marke289; Seidler
and Markert, 2000). All these methods are based on the assursphat the rotor system has symmetric system matricestan
system properties are independent of the rotor speed.

However, these assumptions are not valid for rotors in jalusearings or with gyroscopic effects. Both influences apeificant in
many technical applications. For example, turbines aneiggors are often supported by journal bearings and balamuger service
conditions during assembly or maintenance. Balancing imasHor heavy rotors are equipped with journal bearingsels w

Rotor systems with journal bearings and/or significant ggopic effects have unsymmetric stiffness and dampingiceatr The
unsymmetric system matrices lead to an unsymmetric frexyjumsponse function matrix. Consequently one has tondisish left-
hand from right-hand eigenvectors (Nordmann, 1976). Feir txperimental identification, at least one row and onerool of the
frequency-response function matrix have to be measuregerifrental modal analysis techniques for rotating mackinensidering
this property are summarized by Bucher, Ewins and Robb (1886 Irretier (2000).

Moreover, the journal bearing properties and the gyrosceffects depend on the rotor speed. Consequently all modattiges,
particularly eigenvalues and eigenvectors, are speedndigmt as well. In the application of non-stationary balenmethods, wide
speed ranges are passed in order to collect informatiort gfmrotor system in a broad frequency band with a singletestTherefore,
the system parameters, i.e. the system matrices and thd pardeneters, can change significantly during the measuvimg

The common non-stationary balancing methods as well asrtbeapplied here neither distinguish left-hand from rigandh ei-
genvectors nor take into account the speed-dependent eluditige system parameters during the non-stationary test ipplying
these methods it is important to know how they respond to simdonsidered system properties and to which extent thibyistid
reliable identification results. In the following, the netationary balancing method that was described by SeidikMarkert (1999)
and successfully tested on a rotor in roller bearings byl&e&hd Markert (2000) is first summarized. Then this metiscapiplied to
a model rotor in journal bearings, whose unsymmetric systetrices change substantially with the rotor speed dutiegrieasuring
run. In 2003 Seidler tested the described method succhssfuexperimental data of a run-up of a turbocharger rotor.

Model for non-stationary balancing

As mentioned above, the unbalance identification methodsedon the assumptions that the gyroscopic effects, thsymmetric
parts of the damping and stiffness matrices as well as thedsgependency of the system parameters are negligible syidtem’s
oscillations in the principal axes y and z are then uncoufiech each other. Furthermore it is assumed that the eigemgeof the

conservative system diagonalize the damping matrixki/.~B=BM1K. In a limited frequency range, the behavior of the real
system is described by a discrete model with N degrees aldrae Then the equations of motion in the z-direction arerglwe

M 2w + Bz 2w + K, 2w = —Re{u[¢? (V)] } 1)
where the mass matriM, the damping matriB; and the stiffness matri ; are real, symmetric and constant. The system excitation

results from the unbalances described by the complex vaetdu,, ..., uy]" rotating with the angle of rotatiog(t).

By the modal transformation(t) ~ ®,q,(t), the equations of motion (1) are decoupled and the numbéreofibknown system
parameters as well as the number of the remaining (modatede@f freedom are considerably decreased,
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This reduced set of equations for the rotor deflection inreafion contains only the modal parameters, i.e. the modatix®,,
consisting of the mode shaphsg, the modal massesgﬁgp,, the undamped natural frequenciesm, the modal damping ratids m and
the modal unbalance componenﬁ%% and l&?)Lm of the M modes taken into account. For calculating the umzaaesponse in the

time domain, the system (2) has to be integrated for a givenfsaode shapes, modal masses, natural frequencies, maaigliray
ratios and modal unbalances.

Alternatively in the frequency domain, the unbalance raspadn the z-direction is given by

M Zm2h

ZW(Q) - le mz,m(o) (wgm +2i Q(A)z,mZZ,m - QZ) QZ[UZ’Z? {COS¢} B {Sin(bH ’ (3)

where# denotes the Fourier transform with the frequency varigble

Identification method

Within the unbalance identification process the mode shapésnodal masses are taken from precedent experimental er@da
lysis or calculations. The rotor rotation anglé) is measured simultaneously to the rotor vibration and tigivg angular speedi(t)
and angular acceleratidar{t) are computed from the measurg@) by numerical differentiation and filtering. The unknown gaeters
(unbalances, natural frequencies and modal damping yatiesestimated by fitting the model’'s theoretical resporadeutated from
model equations (2) or (3) to the rotor’s vibration respamsasured during one non-stationary run-up or run-downrs fitay be done
either in the frequency domain or in the time domain.

By including the damping ratios and natural frequencieh@dstimation, a nonlinear minimization problem arises tiaa to be
solved by an iterative search algorithm. As shown by Marke984), the measurement at a single location during onestetienary
run without trial unbalances contains all information resay to identify the unbalances, damping ratios and nidteguencies if the
mode shapes and the modal masses are known.

For unbalance identification in the frequency domain, th@sueed frequency responﬁw(Qk) is calculated by applying the
fast Fourier transform (FFT) to the measured time respapgé). The fitting of the theoretical frequency respoisg(Qx) to the

measured frequency respor%@(Qk) is achieved by using the least squares method

min Z ET(Qu) E(Qu) = min 3 [Zw(@%) — Zw(%)] T IZw () — Zw()] (4)

which minimizes the error vectdg(Qy) containing only the elements related to the locations whezasurements are taken. The
identification result is the parameter vectbicontaining all parameters to be estimated. The minimipatian be carried out by
standard algorithms, for example providedMATLAB .

For unbalance identification in the time domain, the optiestimation for the unknown parametérare found by minimizing the
error

min' " e'(ty) e(ty) = minZ[Zw(tk)—7w(tk)}T[Zw(tk)—fw(tk)}a ®)
0 0

wherezyy (k) denotes the measured vibration amg(ty) = €, 0, denotes the calculated vibration, both for the same medsunerse
of rotation anglep(t), at the same sample poinisand only for the positions where measurements are takentofppte algorithms
for the model fit are available for this case as well.

Turbocharger Rotor with journal bearings

The balancing method described above assumes symmetoasthnt system matrices. As shown by Seidler in 2001, tatbod
yields sufficient accuracy also for rotors in journal begsinfor which these assumptions do not hold. Therefore thikancing
method is firstly tried to unbalance a small turbochargesrrdh 2003 a preliminary study on measured run-up and rwmaddata of
small turbocharger rotors (Fig. 1) was done by Seidler. Tdrdiguration of the balancing planes of the turbochargesrnstgiven in
Table 1.

Plane P1 compressor wheel, radius=4.95mm
Plane P3  compressor wheel, radius=17mm
Plane P2 turbine wheel, radius=12.5mm
Plane P4 turbine wheel, radius=4.2mm

Figure 1. Turbocharger rotor with balancing planes P1 ... P4 Table 1. Parameters of the balancing planes



The results of this preliminary study pointed out, that thisthod is suitable to unbalance rotors in journal bearings.

To enhance the balancing results of this method the exactuletibn of the eigenvalues and the eigenvectors is necessa
ry. A first simulation model for the unbalanced rotor in joalrrbearings from a Garrett GT 15 turbocharger is shown in
Fig. 2. This finite element model consists of beam elementh giadratic trial functions for the displacement in the emd
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Figure 2. FE modell of the GT 15 Rotor

The modelling of the journal bearings is the most criticahpof this modell, because as shown in Fig. 3, varying fomegke the
stiffness values of the journal bearings, the position efdlgenfrequencies is strongly changing. On the other hardgigenvectors
are nearly not changing.
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Figure 3. Changing values of eigenfrequencies against bear ing stiffness

The stiffness and damping properties of the journal bearimgich depend on the Sommerfeld number So and accordingtheon
rotor speed were taken from Someya (1988). During a testtaadg bearing conditions (static loagifrequal to the rotor mass and



viscosity of lubricaning) are assumed. Therefore, the Sommerfeld number Bgb?/(LDnoi Q) depends only on the rotor speed
and the bearings are characterized by a single constamhpter the product S0.

Due to the fact that the system matrices are unsymmetricfréggiency-response function matrix is unsymmetric as wed
the left-hand eigenvectors differ from the right-hand ewgetors. Moreover, the modal quantities change with ther gpeed. With
increasing rotor speed, the eigenvalues move along thectaajes, until they reach critical rotor speed, where a paeigenvalues
moves even into the right half of the complex plane. The reystem is instable above this limit speed.

The balancing method for rotors with speed-dependent systatrices is still under development, so the balancing aeethr
rotors with constant symmetric system matrices was appléed. Therefore, constant real mode shapes, which are sdmxttaleft-
hand and right-hand eigenvectors, as well as constant maaigdes are required as input. The exact modal data will laénelot from
the eigenvalue-problem for different rotor speeds. Tharool of the frequency-response function matrix relatingpoiat on the rotor
is calculated for one rotor speed. Then the approximationshe natural frequencies, modal damping ratios, modakesaand the
real mode shapes are estimated.

Unbalance and parameter identification

For unbalance and parameter identification, only one fastupior run-down is needed. The rotor does not have to beexated
in a particular way; the rotation angle is measured simelasly, and its actual time history is included in the caltiohs.

Starting from stationary oscillations at the constanttiotel speed) =120 s'1, the rotor is accelerated within 1.5 s very quickly

to the maximum speed =2075 s'1. Then this final rotor speed is kept constant until a statipetate is regained. During the run-up,
the Sommerfeld number So passes from 3 (starting speed) o7 (final speed).

_ For unbalance identification the vibration responde at an arbitrary rotor position and the rotation anyl¢) are measured. The
vibration response can be measured at a bearing or dird¢tlg ghaft. For the measurement of the oscillations of thar,ronly one
pickup would be used. However, measurements at additionatibns increase the reliability of the results.

Besides the measurement signals the real mode shapes, da¢ mmasses and first approximations of modal damping ratids a
natural frequencies are fed into the non-stationary baigngrogram. The latter two parameter sets are not requardx taccurate
since their values are only used as starting values for ¢nation.
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Figure 4. Results of unbalance identification from one fast r un-up Figure 5. Balancing within limited speed ranges:
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Former experiments and simulations (Seidler 2001) shotwntledal parameters and unbalances can be satisfactoniliifidd only
if the corresponding critical speeds are passed throughgithhe measuring run. Therefore, if the measurement ruarsaw reduced
speed range, only the modal parameters corresponding ®ighafrequencies within this speed range can be identifitmlvever,
these parameters are identified very successfully, as thparison of the stationary rotor amplitudes before and afiancing shows,
Fig. 5. If for example only the first resonance is passed imibasuring run, only the first modal unbalance is reduced éjn The
two other resonances remain almost unchanged becauseetitdidction is restricted to unbalance vectors orthogdoahe mode
shapes of the resonances which were not passed. After badahe rotor deflection are very small within the rotor spesatye passed
during the measurement (indicated by vertical lines). Traesapplies for the two other examples with different ropmesl ranges as
illustrated by lines b and c.
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