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Abstract. This work presents a sensor system develop for the robot ROD order to allow it to detect and avoid
obstacles when moving in unstructured terrains. The robot is a 4-legaikthg-machine, steered by an operator,
which gives simple instructions thourgh a joystick to be prodebgea control computer, converting them into
appropriate autonomous leg movements. To efective do that the robot has tat@aitynrecognize the obstacles,
locate and avoid them. A system based on ultra-sonic sensors vedepael to carry this task on and, because of
intrinsic problems with such sensors concerning to angular precisidazay inverse model of them was used to
include the uncertainties about the measurements. To provide a regprobot’s surroundings the use of TSK system
as data fusion tool is proposed, in order to attend the peculiadfiégd DURO. The sensors are assembled in“&n |
net, which communicates with the main controller (a PC) bgéehial port, interfaced by a micro-controller.
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1. Introduction

At the Department of Mechatronics of the University Duig-Essen is under development the
Anthropomorphically Legged and Wheeled Duisburg Robot (ALDURDJarge-scale four-legged hydraulic-driven
walking machine with an onboard operator (Fig.1). The ma&chieights 1600kg, is 3.5m high, equipped with four
identical hydraulically actuated legs and supposed to operaterynrugged terrains (Muller, 2002). Operations on
smoother terrains enable to replace the feet afdaelegs by wheels, to enlarge speed and stability.

Figure 1. The robot ALDURO

As an anthropomorphic leg, each one has four degreesedbfre what comprehends a total of sixteen degrees of
freedom to control (Miller, Schneider and Hiller, 1998)e Dperator would not easily achieve to control thehime’'s
movement and anyway it would prevent him of executingheraask. To avoid that, the movement generation was
automated, enabling the control of the robot by a snistick, in this way the operator has just to dictagedesired
movement direction and the robot is supposed to execalktlits leg control.

But to achieve real walking and not only stable gaitplan surfaces is necessary that the robot has iatm
about ground and surround, especially when it controls afdbe action. Hereby the collision avoidance task fallow



as a natural need, which must be implemented accordingfBtJRO’s reality: large dimensions, slow and spatial
movements, unstructured environment, and no need of adamgpath planning (because of the onboard operator).
Considering such characteristics, it was decided to imgrlem reactive navigation system, using a local mesed
on data from ultrasonic sensors. Such sensors are geifisgwvith respect to range measures, but suffer afiéidally
poor angular resolution (Risse, 2002), what conversely brimgadvantage: they cover a whole volume at each
measurement. Because of such inaccuracy, the inverser seodel plays a relevant role to interpret each nreasu
based on the sensor characteristics. The so formedriafion has to be added in an appropriated way to adfase
knowledge (the local map) through a data fusion procdsighwprovides the necessary input data for the navigat
task. In order to consider the uncertainties about thesmmements and because of its relative simplicity, a fuzzy
approach is used and agKinference system is developed, especially to save membag,becomes a problem when
modeling a 3D world.

2. Inver se Sensor Model

Sensor measurements are prone to errors, which andyrdae to the fact that the true physical sensing device
usually does not operate in practice as it was modeletht@pret the measurements from the transducer, a robdel
the sensor is needed; but the true physical operatitiredfansducer is most often too complex to model. Toweref
the interpretation of the sensor measurements afiffers from the true physical value of the paramebext is
measured. If this measurement error is somewhat ranilaran also be interpreted as an uncertainty instresor
measurement: since the sensor is prone to errdggjricertain about the true value of the measure.

Differently from other sensing medias to measure thtadce to a target (like laser beam); ultrasonic ssiisore
quite large emission beams, which makes a priori impesgitknow the exact direction. Actually, conjugated use of
many ultrasonic sensors or analysis of the shape aobthming echo allows a good approximation of the diradtio
the detected object. However, such shape analysis requgtesimility analogue sensors and a posterior, complex and
time-consuming data processing. Besides, conjugated usnsbrs requires the possibility to operate receisad
senders separately, what is not always possible, iaipetith cheap range finder units, where the wholediibn is
treated as a single operation.

Here a fuzzy inverse sensor model is proposed in aoddgscribe the uncertainty degree about a measusevdty
similar to the one proposed by Oriolo, Ulivi and Venldi{@999), but the inverse sensor model has to be fitiethe
data fusion process that will be used here. Gambinolddand Ulivi (1996) have worked with occupancy grids, where
actually two sensor models are used, the one used hregspgands to the sensor model of the occupancy map, modified
to cover a 3D workspace.

2.1. Fuzzy coordinates

A set of three coordinates is necessary to completedifizeca point with respect to a frame fixed to the senso
These numbers are presumed to represent uncertaintiisesd coordinates too, based on the many sensor
characteristics (beam shape, gain, precisipand the measured distance. Considering a reference fieea to the
sensor unit, with it¥X-axis along the sensor emission axis, a set of polardnates can be stated as g, r}, wherea
represents the rotation around Haxis, followed by a rotation of angharound the X-axis andis the distance to the
origin as shown in Fig.2.

T X
Figure 2. Sensor Coordinates

Through a fuzzification process (Morgado de Gois, GernaaxahHiller, 2003), a measudeof the ultrasonic range
finder is to be converted in a group of fuzzy numbetsH, R}, which are actually fuzzy sets and thus represent the
detected point’s coordinates and the uncertainty inhevehet. But a question arises: what would be the predicate
be attended in defining such sets? A good one could be jussibpovalue’, the set of the possible values fortahnget
coordinates, given a sensor read value. Then the furzdinate sets are so stated:

» For a given measurd, if the sensor range inaccuracy is given by a multiplieafactor &, the actual
distance lays in the intervatlf.d; d+&d], respecting the ranging limits, i.e., the range dom@jmfa,.
Considering a normal distribution of possible valuesaagsian membership functipns employed.



* In Morgado de Gois and Hiller (2004), is shown the corredpoce between the gain factor of the sensor
receiver and the possibility of a successful reading rioolgect on the same direction, or conversely, the
grade in which a value (the point location) can be talsea ‘possible value’. As this gain function can be
approximated with very good precision by a Gaussian curve,@uge is adopted as membership function
for a.

« For the angleg the membership function is taken as unitary at teles domain [O; &] because of the
simple interpretation of the predicate: any value tigees possible as any other.

In this way, based on a measured distahdbe uncertainty about the location of a detected psistated in the
present sensor workspace, for each coordinate, by the furmpers in Eq. (1). But it is necessary to have aeingl
membership grade for each post (o, £, r) and not one for each coordinate. So in Eq. (2) thée€lan product is
used to find the membership function of the pgjritating a new fuzzy s& The classical product operation is used as
T-norm (the corresponding operator for intersectiofgatmakes the calculation somewhat easier.

A={(a.upla))/a0[0;n/2]}
B={(8.1s(8))/ BO[0: 15 } (1)
R={(r.ux(r))/r D[0; 27}
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3. Map Building

Given the description of the part of the environmemtaioed in the sensor workspace by the fuzzysseveral of
these sets together, through the appropriate inferemeeexpected to lead to a more exact representatiore of th
obstacles and thus of the surroundings of the robot. It gerient to note that, for the ALDURO application, the
objective is not to locate an object at once, buuppsrt the robot navigation. To be used, the informatiom feach
individual sensor (or from the same sensor at diffeneoments) has to be aggregated to the knowledge basedi)e
In order to do that is necessary first to transfdne abtained measure and its membership functions tGahesian
reference system of the local map.

Through the use of the Principle of Extension and cooreln@ansformation it is possible to obt&in the local
map’s reference system. Now, by to the constructicenobccupancy grid as proposed by Moravec and Elfes (1985),
these sets would be aggregated to 3D models of the envirbnifeze a simplified solution is proposed, where the
whole spatial information is not necessary: a 2D mdp be generated by a Takagi-Sugeno-Kang (TSK) Fuzzy
inference system (Morgado de Gois and Hiller, 2004). Thegss is quite simple and tries simply to approximate the
ground of the environment by a convex surface. That dde®fhect the exact reality in most of cases, but dessithe
necessary features for ALDUROS'’s navigation. That ibetause of the robot's dimensions, then it is notgytin
walk under objects and a minimal safety distance hbs t@pt. The process consists of:

* TheXY-plane (where the robot is considered to walk) is fpamged in many cells;

» Alocal map around the robot and fixed to its bodgasstructed. As the robot moves the map is upgraded
by simple shift operations, eliminating the cells whichdat of it and introducing new ones;

» The fuzzy seSis projected on the map using tin@xoperator over the membership grades. Such function
is quite complicated to obtain analytically, but consigthat for each possible valuedthe support oR
is much smaller than the corresponding lengt8, efe neglect the influence Bf Then, the support of S is
reduced to a surface and is possible to obtain andlytitsaprojection;

» Membership functions are associated to the partittonthe map. As the inputs are fuzzy sets, singlefons
are used at the partitions, what makes the whole edilonla lot easier and faster;

* In such kind of system (Takagi and Sugeno, 1985; Sugeno and K288), the activation valueg are
used to make a weighted average of the output fundiigtieugh the so called fuzzy rules). Here it was
employed one rule for each partitioof the map-cell;

» Linear functions (zero order or first order) are useduput functions.

Basically the fusion process can be seen in Eq.(3hé\end, the parameteis b, ¢, d) of the output functions are
optimized in order to minimize the error between th@meged heightz, of the point %, yi) and the real ong,
actually this optimization leads to the most possibigtte
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4. Smulations

Here is shown a comparison between results from fushoried on by occupancy grid and by TSK system. Two
kinds of linear functions were tested as output functioosstants and planes. The first one has one parapesteule
while the latter, three parameters, what makes thelaiions much slower, since the dimensions of the ioestr
employed at the calculation are directly proportionahrumber of parameters per rule. To the adjustmetiest
parameters was used recursive Least Squares method, anainther rof samples processed at each cycle was adjusted
at both models to fit the waiting time of the sensaiae(considering the use of many sensors), in ordebtain the
fastest processing. To execute the simulations:

»  Number of partitions on the map was varied;
» Different input terrains (randomly generated) were used,;
» Different number of samples (simulated measurements).

In Fig.3 are shown results obtained from a represeatativulation. The contour plots in Fig.3 represent the input
terrain (3.a), the occupancy map from occupancy grid giegjeonto theXY-plane by thenaxoperator (3.b), the map
constructed througlSKsystem with constants as output (3.¢) and with plasiesigut functions (3.d).
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Figure 3. (a) Input Terrain; Maps obtained by (b) TSkwalanes as output functions; (c) TSK with constants as
outputs and (d) Occupancy Grid.

As expected the TSK system seems to be a little madtise to different combinations of terrain and numbie
partitions than the occupancy grid, but the general peaiocen holds. Comparing the best results of both to angive



terrain (considering different number of partitions)e tresults of TSK are closer to the real terrain tthem ones
obtained by occupancy grid. TSK model gives a smoothert thsul occupancy grid if just a few samples are available
This advantage is more remarkable when planes are usetbas functions.

5. Planing

Navigation technigues can be basically classified withio major groups: reactive and deliberative navigatitwe T
proposed solution for ALDURO is a mix of both. Actualthe incremental building of a dynamic map of the
environment (a typical deliberative task) is employegktoer to the formulation of local plans (typicallpcgve).

There are many different technigues to carry out neactiotion planning, and for this particular application some
peculiarities are important when choosing it. In thisectee legs of the robot make full spatial movements and i
addition, each leg has to fulfill the kinematical constiaimposed by the body movement and the joints. Theadtant
developed here is based on the concept of general perc@ittamstingl, Sanz and Ezkerra, 1995; Braunstingl, 1996)
applied to each shank. The reason to consider the skmhksause they are the most exposed area of the tiobot,
most probable area to undergo a collision, then theepgon vector for a shank is calculated (with respeca to
reference point on it) considering each point on the local map.

Two behaviors are implemented by means of variatibniseooriginal technique. In order to do that, the points on
the map are divided in two groups: low points (possibléiferrobot to overcome with a simple step) and the higls.on
For the points of the groupgh the perception vectd?, is calculated just like originally proposed for 2D moveimeas
shown in Eq. (4).
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Originally Imax IS rmax here it was set as suitable value to pass to therdogpl The behavior correspondent to the
grouplow is a little more complicated, because it aims a s&rtnovement to overcome small obstacles on the way.
The heights of the map points are taken in account, gmgithe perception vect®; like in Eq.(5), but this behavior
is active just when the foot hangs on the air in movémen
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A fuzzy inference system which has the heights ofpiiats as inputs with two partitionkw andhigh) and two
rules, each one corresponding to Eq.(4) and Eq.(5), demetle controller outputs. Such outputs are used as
corrections to the movement dictated by the step gemet&the correction is too big, it is transmittedthe movement
of the robot body through the kinematical constrainte/éen the body and the legs. The overall result caseée in
Fig.4, where a simulation with starting point at (1; 5) ardksired final point (9; 1) is shown. The robot perfothe
walking without problems, reaching the target point anddavg the possible obstacles on its way. The use of & loca
map has sure increased the processing time in compatis normal general perception navigation, but the
improvement in information quality by the inclusiontb® uncertainties of the sensors make that neceS3ay.esult
of such improvement is realizable by the performanceéhefrobot at the many simulations executed with many
different unstructured terrains.
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Figure 4. Robot path during simulation

6. Implementation

In this implementation the sensing and controlling taskssaectured in a modular partly hierarchical, partly
parallel controller architecture. The main contmolle ALDURO is a PC, running the modular software envinent
MCAZ2 (Modular Control Architecture Version 2). The encapsdlat@dules are arranged in a hierarchical structure and
consist of defined inputs and outputs. Each module carriea osttain task and communicates with the connected
modules. The whole work presented here is implement2dnodules: map building and obstacle avoidance.
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Figure 5.MCA2module for ALDURQ's control

The used sonar units are SRF08 by Devantech, which praigidal output, having a nominal range of 6m, which is
actually much larger. The sensors are connected @Q#ic microcontroller through afC network, what enables fast
and reliable communication, but this realization presémgsdrawback that these sensors accept not more than 16
different addresses, making necessary the use of furticebaontrollers if we want to use more sensors. Thagsily
achieved appending them to t3€ network, which is connected to PC through the serial port.
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