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Abstract:  We propose a method for the vibroacoustic analysis of structures having symmetry properties. This method 
is based on the reduction of the number of the degrees of freedom involved (size reduction) and the use of experimental 
data ( confrontation numerical / experimental). We propose the extension of the method of the linear representations of 
finite symmetry groups to problems of coupling fluid-structure. This approach leads to a significant reduction of the 
number of degrees of freedom, with a maximal reduction  for the so called repetitive structures, but keeps the quality of 
the approximations. Finally, we present a practical case of  the modal analysis – in air and water - of a ship propeller 
formed by 3 steel Stainless pales. The experimental results are obtained by using the whole-field, non-contact 
technique of electronic holography. 
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1. Introduction  

 
Manufacturers are interested in forecasts concerning the dynamical behavior of structures, since improvements in 

the lifetime, security, comfort or global performance may be obtained by determining unacceptable levels of vibration 
and protecting their products against these ones.  

 
In the particular case of  hydraulic  turbines, ribbed shells, aerospatial structures, such a analysis is considered as 

crucial since these structures are submitted to a wide number of sources of  vibration, what increases the risks of failure 
and nuisance. In this case, the models used must take into account the operating conditions, where the structure is 
immersed into a dense fluid (air or water).  

 
The modal analysis of complex structures by Finite Element Methods (FEM) involves generally a large number of 

degrees of freedom (DOF). When the coupling with a fluid is considered, this large number is already increased by the 
addition of the DOF corresponding to the fluid domain. In order to perform an appropriate computational analysis, the 
reduction of the size of the resulting matrices (i. e., the reduction of the number of DOF) is generally compulsory.   

 
For linear structures presenting symmetry of repetitive type, the theory of finite symmetry groups furnishes tools 

which allow such a reduction without a significant loss of precision: the size reduction keeps the quality of the 
approximation. This work is a step for the extension of these approach to the dynamical analysis of a rotating cyclic 
elastic structure immersed into a dense fluid - what is the case of the mechanical structures mentioned above. We focus 
on the vibroacoustic analysis and the determination of the modal basis of  the structure immersed in the same fluid at 
the rest: we examine the coupled fluid-structure system for the range of frequencies where the added mass effects are 
dominating ( low frequency region) and linear behavior may be assumed. This situation corresponds to  a large part of 
the industrial applications. By limitation of the room, we do not present here the theory of symmetry groups and we 
focus on  its application to the  coupled fluid-structure situation and the significant reduction of the number of DOF 
which is obtained. We present a practical example concerning the modal analysis of a ship propeller. 

 
2. Finite symmetry groups  and reduction of the number of DOF 

 
The proposed approach for the vibroacoustic analysis of a cyclic structure involves two steps: initially, the 

application of the theory of finite symmetry groups and modal synthesis technique lead to a reduced  model. Then, the 
vibroacoustic behavior of the cyclic structure is analyzed by using the reduced model.   In this section, we detail the first 
step. We assume that the structure presents a repetitive cyclical geometry and that the FEM mesh used is also repetitive. 



Thus, the structure is formed of a set of  NS identical substructures (also called cells) and the FEM mesh of each 
substructure is identical. So, the mass and stiffness matrices associated to each substructure are also identical:  
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In order to reduce the model, we decompose all the quantities  in their boundary and interior components: for the 

substructure number k,  
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where U(k)  is the field of displacements and F(k) are the external forces. The index i  refers to interior quantities and the 
index c to the boundary ones.  In the general situation, U(k)  is different for each cell, since F(k)  may be different for each 
one. The forces applied by the other substructures on the substructure k are boundary forces and appear in Fc . In the 
sequel, since no ambiguity is involved, we drop the index k anywhere it is not necessary.  
 

Under cyclic symmetry, the subsystems takes the geometrical form of circular sectors and the boundary forces are 
usually decomposed in “left” and “right” components and we have (the index k is dropped): 
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2.1 Reduction in the static case  
 
The equilibrium of each cell is described by   KU = F, where the external forces are ext

LLL ffF += , ext
RRR ffF += , 

ext
II fF = . ext

I
ext
R

ext
L f,f,f   are the left, right and interior components of the external forces applied to the cell; RL f,f   are 

the left, right forces applied by the other substructures to the cell (internal forces). The compatibility relations 
concerning the displacements and forces at the interfaces between yield 
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(k)
RU  is eliminated either by an energetic method employing the Lagrange equations or by a penalty method. The 

complex system becomes: 
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By writing   I

L
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II iUUU += ; kaα = , this equation  becomes: 
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At each cell, the solution Re(Uj) is given by U =(Ur, UI)t, where 
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2.2 Reduction in the dynamical situation 
 

The dynamical equilibrium of each substructure reads as MU + KU = F.  At first, we determine a basis associated to 
the boundary DOF. Then, the basis is completed in order to describe the whole structure.  

    
 

a) Basis associated to the boundary DOF : Since linearity is assumed, static interior displacements are a linear 
function of the static boundary ones: Ui = cΦ Uc . The matrix  cΦ  may be determined as follows: let b be the index 
describing a boundary DOF. When a unitary displacement is imposed to this single DOF (Uc,b = 1; Uc,n = 0 for n ≠ b), 
the corresponding vector bi,Φ of displacements of the interior DOF is determined by solving the static problem 
previously considered. cΦ  is the matrix formed by assembling these vectors. cΦ  is the basis of  the  nm  first modes of 
the problem. The quality of the approximations in this basis is connected to the value of the fundamental 
eigenfrequency 0cf ,  corresponding to clamping boundary conditions (Uc,n = 0 for any n, including n= b). In practice,  
the index nm corresponds to the index of 0cf ,  in the list of the natural frequencies and the basis is used in the range of 

frequencies  



 30cf0 ,, . 

 
b) Construction of a complete basis : Let us introduce a new basis 
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yielding the condensed matrices : 
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Analogously to the static situation, the following system is solved for each cell: 
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The calculation is similar to the static case but no exterior forces are applied. Due to the symmetry of the problem, 

only the (NS/2+1) sub problems need to be solved. For each α (the  f I  are zero). 
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where  α ∈ {π/NS, 4 π/NS,  ...,  πn/NS} . If NS is even,  n  =  NS/2  and  if  NS  is odd   n  =  (NS-1)/2.  
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11K
~~  and  12K

~~  are given by Eqs. (6)-(7).  11M
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The modes of the global structure are expanded for a given calculated frequency, using the corresponding vector  
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A demonstration of this expansion is given in (El Hami,A and Radi,B. 1996). This approach requires a reduced 

storage: only the stiffness matrix of the cell is needed. It also saves  calculation times by the use of the reduced problem. 
The validity of proposed procedure is illustrated through numerical applications. 
 
3.   Extension to the coupled Fluid-Structure system 
 

The purpose is to present a specific method of calculation of the frequencies and the modes of the preceding 
structure immersed into an incompressible fluid at rest: the state of the fluid is characterized by its field of pressions p. 
The equations of the coupled system have the form (Wang and Bathe, 1997): 
 

LpKUUM:Structure =+&&                                                                                                (16) 
 

UL-Hp:Fluid t
F
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3.1 Modal synthesis. Application to the coupled system 
 

We use an analogous approach involving the partition of the system in repetitive subsystems: the cyclic system is 
decomposed in NS identical subsystems having the form of circular sectors. Each subsystem consists of a solid domain 
and a fluid domain. Coupling arises  through the solid/fluid interface. The internal movements may be described by the 
superposition of dynamic modes with fixed interfaces and static modes of connection (Olsen and Bathe, 1985): 
 

qUU Hycci Φ+Φ=                                                                                                                                                 (18) 
 
where cΦ is the matrix of the static modes, Uc is the vector of  the movements in the outline, HyΦ  is the matrix of  nj  
first hydro-elastic modes with fixed interfaces, q  is the vector of nj hydro-elastic modal variable of the structure. 

 
The internal pressures of the fluid may be described by superposing dynamic modes with interface fixed  and static 

modes: 
 

pi = Ψc pc + ΨR,j rj                                                                                                                                                        (19) 
 
  Ψc is the matrix of connection between the fluid modes connection; pc are the boundary components (left and right) of 
the pressures applied to the cell,  ΨR,j is the matrix of the nj first Ritz modes with a fixed  interface, rj is the vector 
formed by the  nj fluid modal variables. 
      
3.2 Application of the method of cyclic symmetry groups.    
 

The phase shift between two sectors is: 
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From the theory of the linear representations of symmetry groups (El hami, 2000), we have for each αn fixed and for 

the substructure number l :  



 
 

( ) ( ) ( ) ( )nn αα )1(sinU)1(cosUU R
Isn

R
Icn −+−= lll                                                                                                       (20) 

 
( ) ( ) ( ) ( )nn αα )1(sinp)1(cospp R

Isn
R
Icn −+−= lll                                                                                                          (21) 

   
Ucn, Usn ,  pcn, psn are given by Eqs. (8) . 
 

These relations determine the movements of all the structure and the field of pressure of the fluid from the values of 
a single reference sector. The eigenmodes of the whole structure are obtained for every αn  by Eqs (15). 
      
3.3 Summary of the method.    
 

The method of calculation of the eigenfrequencies and eigenmodes of vibration of the coupled cyclic system is 
summarized as follows: 
 
1) The analysis of the complete system formed by NS identical sectors reduces to the analysis of a single basic sector 
containing both fluid and structure separated by their interface. 
2) The basic sector is discretized by using FEM. Subdomain decomposition is eventually applied to the single basic 
sector. 
4) The static modes of both fluid and structure are determined. 
5) The modes of the basic sector are determined. 
6) The method of the representations of the finite groups (El Hami,A , 2000) is applied in order to get a representation 
of the whole structure. 
7) The eigenmodes of the whole structure are constructed.    
       
4. Experimental measurement of eigenmodes and eigenfrequencies by electronic holography 
 

In order to get detailed experimental data about eigenmodes and eigenfrequencies without disturbing the specimen 
we decided to use a full-field, non-contact measurement technique. Such a technique, well adapted to the metrological 
constraints belongs to the electronic speckle pattern interferometry (ESPI) family. Since the vibrations are mostly out-
of-plane and have small amplitudes (in the micrometer range), the particular technique having been used was electronic 
holography (Fig. 1).  
 

 
 

Figure 1. Electronic holography system 
 

In the "classical" method of time-average electronic holography described by (Vikhagen, 1989) four successive 
frames acquired by the camera are used to produce a fringe pattern, representing the object covered by alternate bright 
and dark fringes. The fringes are loci of equal values of the projection of the local vibration amplitude on the local 
sensitivity vector of the setup. They may roughly be considered as loci of iso-amplitude of vibration. The fringe 
function decribing the fringe pattern is the absolute value of the zero-order, first kind Bessel function of argument 
proportional to the vibration amplitude, so the expression of the fringe pattern produced by the image processor and 
displayed by the monitor  is.  

 



( ) ( )[ ]yxJyxBI vTAV ,, 0 ϕ=                         (24) 

 
where B(x,y)  represents the speckled image of the object in its equilibrium position, ( )zJ0  is the zero-order, first kind 

Bessel function of argument z and the deterministic phase term ( )yxv ,ϕ  is a function of the out-of-plane vibration 
amplitude d(x,y) of the object point imaged at (x,y). It is given by the approximate relation: 
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where  �  is the laser light.wavelength. 

Bright fringes, whose intensity is decreasing with the fringe order n, are given by the successive maxima of eq. (24), 
which are: 
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and dark fringes of zero intensity, corresponding to the minima of eq. (1), appear for: 
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The widespread use of the time-averaged method is due to its real-time character, but also to the other 

characteristics, such as the indepence of its sensitivity with respect to frequency. As the fringe contrast strongly 
decreases with fringe order and because of its speckle noise, if the complete full-field of amplitudes is required 
quantitatively, other methods may be used such as recording phase interferograms as described by (Pryputniewicz and  
Stetson, 1989) or quasi-binary interferograms as described by (Borza, 2002).  

The quasi-binary electronic holography uses two 4-frames buckets; the first one corresponds to the stationary object 
and the second one to the vibrating one. The use of these primary data fields allows obtaining a fringe pattern of high 
contrast, containing essentially only two intensity levels, well separated on the histogram of the fringe pattern. The 
bright fringes are loci of all object points where the zero-order, first kind Bessel function of argument proportional to 
the vibration amplitude is positive. The dark fringes are loci of all points where the Bessel function is negative. The 
number of fringes is halved with respect to the time-averaged method, so the measurement range is doubled. 

These two methods use algorithms allow obtaining fringe patterns given respectively by: 
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(A being a constant) in the case of the phase interferograms, and by: 
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( ro−∆ϕ  being a constant or slowly varying factor) in the case of quasi-binary interferograms.  

The laser used in measurements was a frequency-doubled CW YAG laser of wavelength 532 nm. During the 
vibration testing with acoustic excitation, the exciter was a loudspeaker placed behind the object. The excitation sine 
signal of arbitrary frequency was produced by a standard arbitrary waveform generator, followed by an audio amplifier 
adapted to the loudspeakers impedance. The detection of resonant frequencies was done by looking at the object image 
on the monitor while slowly varying the excitation frequency. When approaching a resonance, the fringe pattern starts 
covering the object; the number of fringes is maximum (and the width of nodal lines is a minimum) at resonance. If 
more than a single mode responds for a particular frequency, the nodal lines not only become thiner and thiner while 
approaching the frequency of resonance, but they also change their orientations or shapes, according to the influence of 
each mode in the total response of the object.. This allows identifying these situations and eventually avoiding mode 
coupling by adjusting the position of the loudspeaker. 
 

Figure 2 presents some of the most important experimentally determined modes along with their corresponding 
frequencies. 
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Figure 2. Some of the vibration amplitude distributions and their resonance frequencies 

 
5. Simulation 
 
The problem considered here is the determination of the eigenmodes of the propeller.   
 

 
Figure 3.  Deformed mesh of the propeller 

 
The base cell (1/3 of global structure) is modeled by quadratic elements with six  DOF per node . A deformed mesh 

is represented in Fig.3. A comparison with the experimental results obtained in the laboratory is given in Table 1. 
 

Table 1. Comparison between numerical and experimental results 
Numerical  (Hz) in air  

fnum 
Experimental  (Hz) in air  

fexp 
(fexp –fnum)/fexp (%) Numerical  (Hz) in 

water  
209 
248 
261 

351.4 
363 
743 
840 

1511.3 
1571 
1889 

1974.4 
2070 

209 
226 
--- 

332 
334 
--- 

850 
1496 
1567 
1882 
1901 
--- 

— 
9.7 
--- 
6 

8.7 
--- 

-1.2 
1.02 
0.25 
0.37 
3.9 
---- 

092 
124 
-- 

193.3 
233 
-- 

525 
983.2 
1133.2 
1316.5 
1467 

1533.2 
 

 



We notice a relative concordance between numerically predicted and experimentally measured frequencies 
(electronic holography): the proposed approach  has led to acceptable results concerning the nodal displacements and 
eigenfrequencies for out-of-plane modes. 
 
6. Conclusion  
 

A method for structural analysis of a cyclically symmetric structure immersed in a fluid at rest has been presented. 
The proposed method saves memory requirements and CPU cost by reducing the number of DOF to be considered. It is 
based upon the representation of finite symmetry groups. The experimental comparison has shown that the 
approximations introduced are acceptable and lead to good results. Futur work concern the extension to quasi-
symmetric problems. 
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