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Abstract. This works proposes a method to improve the identification of modal parameters extracted from 
measurements taken from a flexible foundation of a rotating machine. These parameters play a very important role in 
the simulation of a complete rotor-bearing-foudation system, since the behaviour of a flexible foundation affects the 
dynamic response of the rotor. The majority of the methods of modal parameter extraction can not deal with noisy data 
generating several modelling errors. Using a combination of simple optimization algorithms of direct search and the 
least square method, it is possible to improve the modelling minimizing the errors, which allows the full automatization 
of modal analysis process, making it faster and reliable. This method has been tested using the response of a finite 
element model of the foundation, and its robustness and efficiency have been proved to extract modal parameter in a 
wide range of conditions. 
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1. Introduction  
 

Modal techniques are widely used to analyse and simulate behaviour of structures, however the quality of the 
measured data becomes very important depending on the technique applied. The methodology proposed in this work 
offers a more robust approach to determine the modal parameters, that makes the analysis faster and more reliable. 
Consequently, the experimental data can have a lower quality, without affecting the final results. 

Rotating machinery has been studied since long time ago, and recent works (Feng, 1997 and Weiming, 1996) have 
been considering not only the dynamic of the rotor shaft, but also the behaviour of all elements in the system, such 
bearings, couplings and the foundation structure. Some analytic methodologies have been applied to the study of the 
dynamic behavior of structures and mechanical systems (Jainski, 1982). Computerized mathematical models are 
thoroughly developed, aiming to solve vibration problems in machines and their supporting structure. Such 
methodologies use refined models that do not always give quick answer due to the high computacional time involved in 
the process of obtaining the dynamic responses. 

Cavalca (1992) proposed a methodology (Method of Mixed Coordinates) to include the support structure. This 
methodology requires the determination of the modal parameters of the foundation to describe its behaviour.  The 
method presented in this work is the bridge between the requirements of the Mixed Coordinates Method and the 
experimental analysis of foundation structures, which allow the study of the influence of these structures on the rotor 
dynamic. 

The methodology is based on modal techniques and there is an additional procedure to refine the modal parameters, 
based on two minimization methods: Golden Section Search and Least Square Method.  A finite element model has 
been employed to simulate the data acquisition of a real structure, and the frequency response analysed refers to the 
rotor bearings location, which is necessary in the Method of Mixed Coordinates. 
 
2. Modal Analysis 
 
2.1. Frequency response function 

 
To determine the natural frequencies, initially, the frequency response function has to be acquired and analysed for 

an harmonic excitation force applied to a specific node, and acting in vertical and horizontal directions, in a determined 
range of frequencies. 

Although, to solve the equation of motion of the foundation, it is necessary to find the response of a damped system, 
subjected to an harmonic excitation force with an unitary amplitude. The response to a unitary impulse is the Fourier 
Transform of the frequency response: 
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Considering a harmonic force, Eq. 1 becomes: 
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The solution of  Eq. 2 is complex, and can be determined through the Fourier transform, using the Gauss algorithm. 

Then the frequency response function can be written as: 
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With the complex frequency response function determined, it is possible to include its effect on a rotor-bearing 

system and simulate the influence of the supporting structure on the dynamic behaviour of the rotor. 
 
2.2 Natural frequencies 

 
The natural frequencies can be determined by the analysis of the frequency spectrum, to calculate it, the imaginary 

part of the frequency response of each channel is extracted, then their square is calculated and summed for each 
frequency, in the range of frequencies analyzed, and finally the result divided by the number of channels. 

The spectrum of the obtained frequencies shows peaks of frequency, which corresponds to the natural frequencies of 
the structure, in the analysed range. 

Then, for a determined frequency: 
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Where: 
 

→Ω
ne

A Quadratic mean of the imaginary components of the transfer function, at the nth frequency ( eΩ ). 

→Ω
ne Nth excitation frequency. 

→
jIh Imaginary component of the jth transfer function at the frequency (

neΩ ). 
→m Number of transfer functions. 
→n Number of frequencies in the analysed range. 

 
2.3 Damping coefficient 

 
With the natural frequencies of the structure determined, they can be used to calculate the damping parameter of the 

structure. These parameters are determined through the derivative of the phase diagram, which has to be calculated near 
the natural frequencies of the structure. Thus if the coupling between modes is neglected, the transfer function phase 
presents a linear change of 180º, in an interval close to each ressonance. So the damping factor for the jth mode is 
defined as: 
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Where: 

→iξ Logarithm decrement or damping ratio 
→

inω Natural frequency of the ith mode. 

→Ωe Excitation frequency. 
→ψ Transfer function phase. 

 
 



 
 

2.4 Mode shapes 
 
The Nyquist diagram is used to determine the mode shapes, where the amplitude and transfer function phase are 

plotted. The method using the Nyquist diagram is based on the calculation of the circuference arc which aproaches the 
transfer function in the neighbourhood of each mode, considering the fact that the complex response vector represents 
the equation of a circle (Diana et al, 1988). Plotting the circunference, it is possible to determine the mode shapes 
analysing the coordinates of the center of the circle. Since the coupling between modes is neglected, the structure 
behaves as a SDOF system near each ressonance. 

In the ressonance, the amplitude of the response becomes the circle diameter (Ewins, 1984) to a SDOF system: 
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Where D is the diameter of the circle and : 
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The phase angle of the excited channel can be written as: 
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Then the phase angle of  the other channels become: 
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2.5 Generalized mass 
 
Once the mode shapes are determined, the modal masses are evaluated minimizing the error between the two 

transfer functions: the analytical transfer function, defined by the Eq. 3, and the approached transfer function. The 
analytical transfer function is calculated, determining the masses for all mode shapes. Then the masses are used to 
calculate the new transfer function (approached function (h)). 
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Thus, with the masses of  Eq. 3 determined, the approached transfer function (calculated in the neighbourhood of the 

mode) is defined to a determined natural frequency, considering the n mode shapes: 
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Where mn is the generalized modal mass associated to the nth mode. 
 
The solution of Eq. 11 determines the approached transfer function in the neighbourhood of each mode, and can be 

written as: 
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However, sometimes the number of frequencies, in the frequency range chosen, is different from the number of 

generalized masses. Then, to determine the generalized masses, an error function is defined, relating two transfer 
functions (analytical and approached), which minimized for the natural frequencies, will determine the generalized 
masses: 
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3. Optimization method 
 

Sometimes the results obtained need to be refined, after the modal analysis. In order to solve this issue, an 
optimization method has been created, which uses the modal parameters calculated with the modal techniques 
presented, as the initial value for the optimization process. 

The direct search method used is the Golden Section Search (Bunday, 1984). This method does not require a 
specified number of function evaluations at the outset, as the Fibonacci search. The name Golden Section search comes 
from the Golden ratio, which is the constant ratio obtained when the number of evaluations is infinite. 

The Golden Section search is used to optimize the values of phase angle and the damping coefficient. To refine the 
generalized mass in each loop of the algorithm, a least squares method (Ruggiero et al, 1988) is used to minimize the 
error. This method is very fast and reliable, however its application is restrict, because it requires somes conditions of 
derivative of the equation to be minimized. 

These are the steps of the optimization algorithm: 
 
a) Read the modal parameters and the experimental data; 
b) Set n=1 (number of loops); 
c) Set i=1 (number of modes); 
d) Determine the interval of the damping  factor of the mode i to be searched; 
e) Search the damping factor which minimizes the error (Golden Search); 
f) Set j=1 (number of channels); 
g) Determine the interval of the phase angle of channel j and mode i to be searched; 
h) Search the phase angle which minimizes the error (Golden Search); 
i) If j<number of channels, then j=j+1, and go back to step g; 
j) Calculate the generalized mass of the mode i which minimizes the error (Least Squares); 
k) If i<number of modes, then i=i+1, and go back to step d; 
l) If n<maximum number of loop and error>minimum error determined, then n=n+1, and go back to step c. 
 

4. Finite element model 
 
To test the methodology, a structure of a rotating machine has been simulated, using the finite element method, and 

the frequency response function of two points (in both vertical and horizontal directions for each point) has been 
calculated. 

The first bearing of the rotor shaft is located on the point 3, as it can be seen on fig.1, and the second bearing is 
located on the point 8. These are the points which the FRFs has been calculated for. 
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Figure 1. Foundation structure outline. 

 
The finite element model has used beam elements, and steel has been considered as the material of the beams in this 

simulation. The horizontal direction of the point 3 has been excited with a harmonic signal. 
 
5. Results obtained 

 
Four channels have been used in this analysis, channel 1 and 2 refers to the vertical and horizontal directions of the 

bearing 1, point 3 in fig.1, channel 3 and 4 refers to the vertical and horizontal directions of the bearing 2, point 8 in 
fig.1.  Table 1 presents the values of the modal parameters calculated through the methodology presented on section 2.  

Few points were used because only the response of the points where the bearings are placed, are further used to 
simulate the behaviour of the rotor, however to get more realistic representation of the whole structure, for a deepest 
analysis of the foundation, a large number of nodes can be used.  
 

Table 1. Modal parameters of the structure. 
 

 Mode 1 Mode 2 Mode 3 
Frequency [rad/s] 0.1987 0.2755 0.2473 

Damping Coefficient 0.0015615 0.0028378 0.0048705 
Generalized Mass 41868 30294 22187 

1 -6.5713e-05 + 1.3516e-06i -0.00014526 - 4.9664e-06i -8.8638e-05 - 2.7765e-06i 
2 0.7066 - 0.014383i 0.70616 + 0.02578i 0.69961 + 0.023608i 
3 -3.3385e-05 + 6.4754e-07i 6.0629e-05 + 2.1155e-06i 5.0633e-05 + 1.5934e-06i 

Mode 
Shape 

(Channel) 
4 0.70734 - 0.013676i -0.70712 - 0.025398i -0.71378 - 0.022542i 

 
The three frequencies have been selected through the analysis of spectrum of the frequency response. It is important 

to notice that the frequencies selected refers to horizontal modes, excited by a harmonic force applied to point 3, the 
location of the bearing, in a horizonta1 direction.  
 

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32 0.34
-0.5

0

0.5

1

1.5

2

2.5

x 10-6

Frequency [rad/s]

Im
(w

)

  
0.1 0.15 0.2 0.25 0.3 0.35

-1.5

-1

-0.5

0

0.5

1

1.5

x 10-6

Frequency [rad/s]

R
e(

w
)

 
Figure 2. Comparison between frequency response functions of channel 1 (imaginary and real part) 

(green – experimental, blue – modelled) 
 



Analysing fig. 2, it is noticiable the difference between the experimental and the modelled frequency response 
function concerning the third mode (0.24 rad/s). The coupling between the second and third mode has made the modal 
analysis less precise. 
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Figure 3. Comparison between frequency response functions of channel 2 (imaginary and real part) 

(green – experimental, blue – modelled) 
 

In figure 3, the same event detected at channel 1 analysis takes place in the determination of the modal parameters 
of channel 2. The damping coefficient of third mode seems to be higher from what is expected, which can be visualized 
through the comparison of the imaginary parts. 
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Figure 4. Comparison between frequency response functions of channel 3 (imaginary and real part) 

(green – experimental, blue – modelled) 
 

Comparing the responses of channel 3 to channel 1, the negative influence of the calculation of  the third mode 
becomes very clear. 
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Figure 5. Comparison between frequency response functions of channel 4 (imaginary and real part) 

(green – experimental, blue – modelled) 
 



 
The analysis of the experimental response compared to the modelled frequency response reveals that the modal 

technique used does not give precise results when there is a damping, which couples modes, even considering a light 
damping. 

 
 
 

Table 2. Modal parameters optimized. 
 

 Mode 1 Mode 2 Mode 3 
Frequency [rad/s] 0.1987 0.2755 0.2473 

Damping Coefficient 1.4990e-03 2.0433e-03 1.9023e-03 
Generalized Mass 44599 43753 60435 

1 -6.5716e-05 +1.1545e-06i -0.00014504 +9.4154e-06i -8.8671e-05 - 1.358e-06i 
2 0.70674 +  0.0025775i 0.7053 -   0.043437i 0.69987 +   0.013811i 
3 -3.3223e-05 +3.3467e-06i 6.0665e-05 -4.3201e-07i 5.0173e-05 +6.9917e-06i 

Mode 
Shape 

(Channel) 
4 0.70513 -   0.057477i -0.70754 -   0.007714i -0.70529 -    0.11206i 

 
Using the optimization procedure described on section 3, the modal parameters have been refined and the new 

values are presented on Tab. 2. 
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Figure 6. Comparison between frequency response functions of channel 1 (imaginary and real part) 

(green – experimental, blue – optimized) 
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Figure 7. Comparison between frequency response functions of channel 2 (imaginary and real part) 

(green – experimental, blue – optimized) 
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Figure 8. Comparison between frequency response functions of channel 3 (imaginary and real part) 

(green – experimental, blue – optimized) 
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Figure 9. Comparison between frequency response functions of channel 4 (imaginary and real part) 

(green – experimental, blue – optimized) 
 

Comparing the response optimized to the experimental response (Fig. 6, 7, 8 and 9), it is possible to notice an 
improvement on the results, particularly on the channels where the amplitude is higher (channels 2 and 4), which have a 
stronger influence on the error. 

These optimized results could be improved if more modes were considered in the analysis. Considering the first 
three mode shapes the total error of the non optimized system is 64% of deviation from the experimental data. 
Otherwise, the optimized system error of the optimized system is 19%. Considering the seven first mode shapes the 
error becomes 7% considering the total range of frequencies acquired, and less than 3% considering the frequency range 
of the seven modes.  
 
 
6. Conclusions 

 
The use of simple optimization methods, as presented in this work, confirms that it brings benefits, specially when it 

takes the modal parameters calculated through the modal technique discussed on section 2. The computational effort of 
this methodology is minimal, if it is compared to multiple variable optimization methods, which depending on the 
number of variables and the quality of the experimental data, can take a long time to reach the global minimum. 

This methodology is particularly useful to analyse experimental data with lower quality. Due to the wider frequency 
range that can be analyse during the optimization process, this range can be defined by the user, who selects the most 
appropriate range for each case.   

Some improvements can be made considering the analysis of systems with higher damping coefficients, which 
makes more difficult the modal analysis and the optimization process. The use of multiple variable methods should be 
considered to refine the parameters in a small range of frequencie and with few variable to be optimized. 
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