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Abstract. The present work proposes a multi genetic algorithm to fit dynamic parameters of rotors. A non-linear journal 
bearing model is analyzed and adopted to adjust the unknown parameter. This analysis shows that the proposed bearing model is in 
agreement with known linear bearing models. To validate the fitting method, a simulated fitting process was accomplished. The 
fitting results are satisfactory, but the applied computational resources are considerable elevate. 
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1. Introduction  

 
The rotordynamic analysis is becoming a previous phase of study to the design, due to the possibility of predicting 

problems during the operation of the system, as those caused by vibration amplitudes when a rotor, for example, is 
passing through a critical speed (Lalanne, 1990 and Vance, 1988). 

Mathematical models were developed, in order to represent real machines with considerable confidence. So, several 
researches were pointed to determine better models to rotating machinery as turbogenerators and multi stage pumps, 
which are horizontal rotating machines of high loads capacities. Some of these numeric simulations were developed to 
study cylindrical hydrodynamic bearings by Capone (1991 and 1986), where the orbits of the shaft in the bearings can 
be obtained. 

The experimental analysis is also a strong support in processes of predictive and preventive maintenance, because 
allows the diagnosis of operational problems, before some failure of the system. This work makes use of non-linear 
models to the hydrodynamic bearing analysis (Cavalca, 1994 and 1998), through the evaluation of the hydrodynamic oil 
film resultant forces. The supporting hydrodynamic forces model adopts the short bearing mathematical development 
(Childs, 1993). From this approach, it is possible to obtain faster numerical solutions of the motion equations of the 
system. Experimental data can be utilized to update analytical model and estimate or improve unknown parameters. 
Irretier and Liedermann (2002) improved damping parameters from experimental results and model updating.   

Cavalca et al. (2001) proposed an unrestricted optimization method to updating non-linear journal bearing forces 
model to experimental results. This fit method was limited by an unique parameter for each bearing, the temperature, 
which influences the viscosity of the oil film in the bearings. These parameters incorporated all the non simulated 
effects, as the coupling stiffness, the oil flux in the bearings, different torques in the screws assemble of the joining, etc. 
Therefore, the adjusted parameter, in certain situations, did not converge to physical meaning values. 

In this work a multi-parameter method is used to update the model. The method is based on genetic algorithm (GA) 
that is a metaheuristic search method that simulates a biological reproduction and evolution through generations 
(iterations). It is a robust method, because it is not influenced by local optimum or signal noise. It is not necessary to use 
differential calculus or any kind of advanced mathematical concept as well. The genetic algorithm was applied to model 
updating or refinement by Levin (1998) and Zimmerman (1998). 

 
2. Mathematical Model 

 
A mathematical model of a rotating system can be divided in two parts; the finite element model of the shaft and 

the concentrated mass to the disk, and the non-linear hydrodynamic supporting forces of the cylindrical journal bearing, 
which is obtained by the Reynolds’ equation solution for short bearings. 



Equation (1) describes the pressure distribution inside the cylindrical journal bearing, based on the Reynolds’ 
equation solution for laminar flux condition. This expression considers the oil thickness h and the axial gradient z, due 
to the losses of lubricating fluid in short journal bearing. 
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The pressure gradient in circumferential direction can be neglected for short journal bearing in relation to the axial 

gradient (Childs, 1993). Therefore, the result of the differential equation with this simplification is: 
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In order to determine the force generated by the oil film pressure distribution, the shaft contact area, 

dzLdRdA ... υ= , is considered in Eq. (3): 
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Where the terms V, G and F are respectively given in Eq. (4), (5) and (6). 
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The differential equation of motion must be written in two coordinates, x and y, respectively Eq. (7) and (8). 
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The matrixes [M], [C], [G] and [K] are respectively the mass, damping, gyroscopic and stiffness matrixes of the 

shaft and concentrated mass, which are obtained by a classical finite element method. The shaft damping matrix [C] is 
considered as proportional to the stiffness and mass matrixes ([C] = α[M] + β[K]). The rotor weight is represented in 
these equations by W.  

The solution of the equation of motion is obtained by the application of numerical methods. In that case, the 
Newmark integration method was chosen, because it is a robust algorithm to solve non-linear equations in time domain. 

 
 

3. Simulated Results 
 
In order to simulate the rotor system, the model represented by Fig. 1 was adopted. The model parameters is also 

shown in Fig. 1 
 



 
Proportional coefficient related to stiffness β 25·10-6 

Proportional coefficient related to mass α 15 
Weigh of the disc 20.95148 kg 
Young’s Modulus of the shaft 2.067·1011 Pa 
Shaft density 7800 kg/m3 

Shaft length 690 mm 
Shaft diameter 12 mm 
Shaft diameter in the bearings journal  20 mm 
Bearing diameter 20 mm 
Bearing length 20 mm 
Oil viscosity 60 mPa.s 
Bearing clearance 180 µm  Unbalance Moment 5·10-4 kg.m 

 
Figure 1 – Simulated model and model parameters 

 
Considering the parameters of Fig. 1, the dynamic system was simulated. The responses of this simulation are 

shown in Fig. 2 to 7. 
 

 
 

Figure 2 – Displacement x of simulated system x time Figure 3 – Displacement y of simulated system x time 
 

  
Figure 4 – Hydrodynamic Force x of simulated system x 

time 
Figure 5 – Hydrodynamic Force y of simulated system x 

time 
 



  
Figure 6 – Orbit of the System (Transient + steady state) Figure 7 – Orbit of the System (Steady State part) 

 
It can be noted that the mean force in the y axes (Fig. 4) is the half of the weigh of the system, because there are 

two bearing in the system.  
To verify the influence of rotational speed, disc weight, unbalance moment, oil viscosity and bearing clearance, the 

system was simulated varying these parameters. Figures 8 to 11 show these influences on the orbit of the shaft center in 
the bearing. It is also possible to observe the change in the position of the shaft center in the bearing. 

 

 
 

Figure 8 – Rotation speed influence Figure 9 – Unbalance Moment influence 
 

 
Figure 10 – Bearing Clearance influence Figure 11 – Oil viscosity influence 

 



 

  
Figure 12 – Disc weight influence Figure 13 – Disc weight influence in force y 

 
If the rotational speed increases, the center of the shaft approaches to the center of the bearing, as in Fig. 8. The 

unbalance moment does not change the position of the shaft (Fig. 9), but it strongly influences the orbit amplitude. As 
observed in Fig.10, the bearing clearance increases causes higher orbits and the center of shaft move away from the 
bearing center. A higher viscosity (Fig. 11) decreases the amplitude of the oscillation and the shaft approaches the 
bearing center. As it is expected, a weightier disc changes the mean force in y axes (Fig. 13) and increases the 
eccentricity position (Fig. 12).  

Some of these parameters cannot be known in physicals systems. So, it is necessary fitting methods to adjust these 
parameters. This work proposes a fitting method based in a multi-objective genetic algorithm. The fitted functions are 
the bearing and disc orbit and hydrodynamics forces. 

 
4. Genetic Algorithm 

 
The genetic algorithm is a search strategy that employs random choice to guide a highly exploitative search, 

striking a balance between exploration of the feasible domain and exploitation of “good” solutions (Holland,1992). This 
strategy is analogous to biological evolution. From a biological perspective, it is conjectured that an organism structure 
and its ability to survive in its environment (“fitness”), are determined by its DNA. An offspring, which is a 
combination of both parents DNA, inherits traits from both parents and other traits that the parents may not have, due to 
recombination. These traits may increase an offspring fitness, yielding a higher probability of surviving more frequently 
and passing the traits on to the next generation. Over time, the average fitness of the population improves. 

In GA terms, the DNA of a member of a population is represented as a string where each position in the string may 
take on a finite set of values. Normally, this “DNA” is represented by a binary string. It makes possible to work with 
integer and real numbers together in the same optimization process. Therefore, a decoding transforms this variable in 
binary numbers. However, it is possible to use different kind of codes, such as genes, that are represented by integer and 
real numbers.  

The decoding of a binary sequence to decimal number (integer or real) is represented by Eq. (9): 
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Where cj and dj are the maximum and minimum possible values of the decimal variable xj and bi are the digit ith of a 

binary number with k digits.  
Thus, the number of digits of an individual (chromosome) is the product of the number of variables and the number 

of bits. 
Members of a population are subjected to operators in order to create offspring. Commonly used operators include 

selection, reproduction, crossover, and mutation. The selection operator compares the individuals of the population. The 
individuals that are closest to the optimum point have a major probability to produce a new offspring by reproduction, 
crossover and mutation. 

The crossover operator combines the data of two different individuals. The mutation operator changes some bits of 
an individual. The following schema in Fig. 14 represents these two operators. 

GA’s are noted for robustness in searching complex spaces and are best suited for combinatorial problems. 
The size of binary string in the implemented genetic algorithm is equal to the product of the number of variables 

and the number of bit of each variable. The problem variables are unbalancing moment and the viscosity of each journal 
bearing, so it is equal to three. The number of bit of each variable is eight. Consequently, the size of the string is twenty 
four.  



There are five GA parameters that influence the process time and the objective function convergence. As the GA is 
characterized to be a search algorithm, the increase of the operation time brings about better objective function 
convergence. The GA parameters are: 

• Total number of generations: this parameter is characterized to be the stop condition of the genetic 
algorithm. The increase of the total number of generations results in a linear increase of the computational 
process time.  

• Population size: it is the number of individuals, who are represented by their chromosomes in each 
generation. The increase of this parameter increases the probability of objective function convergence. 
However, the process time increases very significantly.  

• Mutation probability: it is the probability of mutation occurrence. 
•  Mutation rate: it is the rate of bits that can suffer mutation. 
• Crossover Probability: it is the probability of the crossover occurrence.  

If these parameters are not adjusted to the problem, the convergence cannot occur or it needs a long computational 
process time to occur. 

In order to keep the best results of each generation, the value of 10% of individuals are kept in the next generation. 
This process is known as elitist strategy and this rate is also a genetic algorithm parameter.  

Figure 15 shows the genetic algorithm flowchart and its steps from the generation of initial population to the end of 
the search process. 

 

 

 
Figure 14 – Mutation and Crossover Figure 15 – Genetic Algorithm Flowchart 

 
 

5. Objective Function 
 
The GA works with an objective function, containing all the control variables. That function correlates the 

experimental (or simulated) information with the adjusting variable values, which determines the error function. The 
objectives functions considers average of x and y displacements in both bearings and in the mass displacement for 
experimental and adjusted data. The variable w is the weight of the objective function, equal to 0.2 for this case. This 
weight can group all functions in a single one (Eq. 10). 
 

∑

∑













 −
+

−

+











 −
+

−
=

mass
erimental

mass

erimental
mass

adjusted
mass

masserimental
mass

erimental
mass

adjusted
mass

mass

bearing
erimental

bearing

erimental
bearing

adjusted
bearing

bearingerimental
bearing

erimental
bearing

adjusted
bearing

bearing

Y

YY
w

X

XX
w

Y

YY
w

X

XX
wfo

exp

exp

exp

exp

exp

exp

exp

exp

 (10)

 



 
The adjustment process uses three variables, which are the variation of the unbalance moment and viscosities in 

both bearings. They are the Finite Element Model of rotor input, where the results (orbits) are used in the objective 
function to determine the error value, returning to the GA (Fig. 16). The parameter variation law is given by the Genetic 
Algorithm Method. 
 

 
Figure 16 – Adjustment process using a rotor model, objective function and genetic algorithm method. 

 
6. Simulated Fitting 

 
A Laval rotor supported by two non-linear journal bearings was simulated as the base to an adjusted process. A 

unbalance mass was used as the excitation force (Table 1); the rotor is in stationary condition at 150 rad/s, the bearings 
clearance is of 180 µm, the central mass weight is of 2.1 kg, total length is of 690 mm and the diameter is of 12 mm. 

Table 1 shows the original parameters and adjusted parameters for this test. Fig. 16 represents the simulated and 
adjusted orbits of both bearings and the central mass. The total number of generations for this test was 20 generations 
and the population size was 60 individuals. 

In order to simulate real displacements, a random noise is add to the simulate curves. This noise can reach until 
10% of the signal. 

The adjusted parameter values (viscosity and unbalancing moment) are very close to the input values. The 
displacements, forces and orbits in Figs.17 up to 20 are also close to the generated signals. However, these results can 
be improved with more generations and population size in the GA method. These results show that GA can be use to 
adjust the proposed model. 
 

Table 1 – Simulated parameters. 
 

 Simulated Signal Adjusted Signal 
Viscosity in bearing 1 [Ns/m²] 0.06 0.064 
Viscosity in bearing 2 [Ns/m²] 0.06 0.064 
Unbalancing moment [kg.m] 0.0005 0.0005133 

 
 

 
(a) 

 
(b) 

Figure 17 – Simulated and adjusted displacements of bearing 1: (a) x axes; (b) y axes. 
 



 
(a) 

 
(b) 

Figure 18 – Simulated and adjusted hydrodynamics forces: (a) x axes; (b) y axes. 
 
 

The Fig. 18 shows that the simulated and adjusted forces are close. So, the little difference between the 
displacements in Fig. 17 is caused by the unbalance model and it is necessary to direct more resources to fitting this 
parameter, because it has a higher influence in the displacement. 
 

 
 

Figure 19 – Simulated and adjusted orbits of bearing 1. 
 
 



 

 
 

Figure 20 – Simulated and adjusted orbits: mass. 
 
9. Conclusions 

 
This work uses a non-linear journal bearing model in a Laval rotor. A time integrated solution gives the orbits of 

the bearings and mass, as well as hydrodynamic forces, excited by unbalance forces. The model is simulated, in order to 
verify the influence of some parameters in the system dynamic behavior. Some of these parameters, as viscosity of the 
oil in the bearing and unbalance moment, can be unknown in some experimental set up. So a fitting method, based in 
genetic algorithm, is proposed to adjust the orbits of the system in the bearings and in the disc. As more than one orbit is 
adjusted, the optimization process can be considered as a multi-objective one. With the aim of reduce the number of 
objectives functions a weight of each function is determined, joining to one single objective function. In this work these 
weights were considered the same. For future works, it is intended to determined different weights.     

 The simulation tests show that the proposed bearing forces model behaves as the well-known bearing models and 
close to real journals bearing. A comparison between these methods and linear methods are intended to the future. 

The simulated fitting results show that the proposed adjusted method (Genetic Algorithm) can lead to satisfactory 
results. Otherwise, correct genetic algorithm parameters must be chosen to get this good result. 

The objective function takes into account only the displacements at bearings and concentrated mass, once these 
parameters are easier to control in real cases. Otherwise, a sensitivity analysis could be very interesting to the weighted 
displacements, in x and y directions, in the objective function.  

Experimental tests are going to be accomplished in order to adjust the model to real results. 
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