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Abstract. This paper deals with a mechanical system excited by a DC motor, with limited supply power, which base is leaned on a 
spring. Besides, the DC motor rotates a small mass m. Such machine is known as centrifugal vibrator. As it is usual, we assume that 
the damping, the stiffness of the spring, the difference between the resistive and driving torque are small. Moreover, the system is 
weakly coupled. Differently of the classical approach, in the mathematical model of this kind of problem, we assume that the 
moment of inertia of the rotating parts of the DC motor is big and we obtain several new results. By using the Averaging Method, in 
the region of resonance 1:1, we prove several results on stability of periodic orbits in the reduced phase space of this system. 
In our most important result, we find that there is no Jump Phenomenon occurring in this kind of vibrating problem,  if we take into 
account big values of moment of inertia of the rotating parts of the DC motor 
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1. Introduction  
 

In the study of non-linear vibrating systems, it is almost always assumed that the energy source does not experience 
any influence from the vibrating system itself that is one say that the energy source is ideal. Here, we assume that 
motion of the system may have an influence on the action of the source. Because of this influence many of the 
properties of non-linear vibrating systems are found to depend on the properties of the energy source.  In an ideal 
system we assume a motor operating on a structure requires a certain input (POWER) to produce a certain output 
(RPM), regardless of the motion of the structure. For a non-ideal system this may not be the case. So, we are interested 
in what happens to the motor, input and output, when it changes the response of the system. 

 Two important properties of non-ideal vibrating systems are mention, next.   
 
1- Jump phenomenon is a non-linear effect that appears when a portion of the right branch of the frequency- 

response curve becomes unstable or when this curve becomes multivalued. As the driving frequency approaches the 
natural frequency, the vibrating system can suddenly jump from one side of resonance to other. That is, the system 
operating in a steady –state mode cannot realize certain frequencies near resonance. The Jump appears on the frequency 
response curve as a discontinuity, which indicates a region where steady-state conditions do not exist.     Thus, we see 
that modeling systems by ideal model may be inadequate, if the driving frequency lies near a natural frequency of the 
system, as is often the case.  

 
2- If one considers a typical frequency-response curve, we note that as the power supplied to the source increases, 

the RPM of the motor increases accordingly. However, this behavior does not continue indefinitely. That is, the closer 
the motor speed moves towards to the resonant frequency, the source requires more power in order to increase the 
motor speed. More formally a large change, in the power supplied to the motor, results in a small change in the 
frequency, but a large increase in the amplitude of the resultant vibrations.   Thus, near resonance it appears that 
additional power supplied to the motor only increases the amplitude of the response while having little effect on the 
RPM of the motor    

 
  Note that the Jump phenomena and the increase in power required by a source operating near resonance are 

manifestation of a non-ideal  energy source and are referred   as the Somerfeld effect.  We remarked that there is no 
suggestion of coupled systems (with its energy source) in which does not exist the Sommerfeld Effect in current 
literature, see  Balthazar et all (2004), Balthazar et all (2003), Balthazar et all (2001),  as well as in the classical book 



Kononenko (1969). One of the problems often faced by designers is how to drive a vibrating system and avoid the 
Sommerfeld effect. Here, we give an example of this. Indeed, by using the Averaging Method, we prove that a 
centrifugal vibrator, with big inertia moment, has no Sommerfeld Effect.  In the true for another non-Ideal problem, see 
Dantas and Balthazar, (2004), we have proved an analogous result.  

 We organize this paper as follows. In Section 2, we present the problem to be analyzed. In Section 3 we discuss the 
stability of the solutions and in Section 4 we present some discussions and concluding remarks of this paper. In Section 
5 we do some acknowledgements and finally we mention the bibliographic references used. 
  
2. A Centrifugal Vibrator with Big Moment of Inertia 
 

Here, we consider a mechanical system excited by a DC motor, with limited supply power, which base is leaned on 
a spring. Besides, the DC motor rotates a small mass m, see Fig.1. This electro-mechanism has the main properties of a 
machine known as centrifugal vibrator.  

 

 
Figure 1: A Centrifugal Vibrator 

 
The motion equations of this system were obtained before by Kononenko (1969), see page 38 . These equations are 

the following ones: 
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where mmm 01 +=  and 0m  denotes the mass of the DC motor. The resistance of the oscillatory motion is a linear force 

x�β . The constant c  is the stiffness of the spring. And d  the elasticity coefficient that describes how much the 
behavior of the spring moves away from the linear case. 

For the remainder of this paper, we consider all constants that appear in Eq. (1) strictly positive. We will denote by 
r  the distance between the mass m  and the axis of rotation of the DC motor. J  and 2rm  are the moment of inertia of 
the rotating parts of the motor and the moment of inertia of the rotating mass m , respectively. Therefore, the total 
moment of inertia of the system is given by 2rmJI += . Furthermore, g  denotes the acceleration of gravity. Note that 
the function ( )⋅M  is the difference between the driving torque of the source of energy (motor) and the resistive torque 
applied to the rotor. Such function ( )⋅M  is obtained from experiments. 

As it is usual, we introduce a small parameter 0>ε  in Eq. (1) in following way: 
( ) ( ).MM,dd,,rmrm ⋅→⋅→→→ εεβεβε  From this, we assume that rgmrgm ε→ .  Now, we are interested in 

the situation which we have a “big motor.” Such condition is included in the model by assuming that εII → .  By 
using the earlier conditions in Eq.1 we get 
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By making mc2 =ω , 12 ma β−= , 13 mda −= , 14 mmra = , Imra5 = , Imgra6 = , ( ) ( ) IMM 1 ϕϕ �� =  and 
from the following change of variables xx1 = , xx2

�= , ϕ=3x , ϕ�=4x , we can write Eq. (2) as  
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Equation (3) can be written as  
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By expanding Eq. (2) in the parameter ε  we get 
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Now, by making the following change of variables 
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in Eq. (4), we obtain that 
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We would like to emphasize that Eq. (5)3 takes into account the resonance condition. 

We obtain, from Eq. (6), the following reduced system:  
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By using the Averaging Method, see Guckenheimer and Holmes (1983), we get from Eq. (8) the following system :  
 

( )
( )

( ) �
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

	




�
�

�
�
	


 +

−−Ψ−

+−

=

�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�

	




Ψ ωω
ω

ωω
ω

ω
ω

ε

1
2

5

3
3

2
42

24

3

3

3

MBsinAa
2
11

Aa3Bcosa4A8
A8

1

AaBsina
2
1

dx
d
dx

Bd
dx

Ad

��

����
�

��

�

�

�

.                                                                                  (8) 

 



Here, A
�

, B
�

, Ψ
�

denote the averaged functions of  A , B , Ψ  respectively.  As it is well known, see Guckenheimer and 
Holmes (1983),  hyperbolic equilibrium points of  Eq. (8) correspond to hyperbolic periodic orbits of Eq. (7).   
 
3. A Stability Analysis 

 
The equilibrium points ( )000 ,B,A Ψ

���

 and ( )100 ,B,A Ψ−
���

π of Eq. (8) are given by: 
 

( )

( )

.
A8

Bcosa4Ab3

,0abwhere
A8

Bcosa4Ab3

,0Bcoswhere
aa

Mb21
Bsin

,0abwhere
ab

Ma2
A

0

0
2

4
3
03

1

33

0

0
2

4
3
03

0

0

54

12
0

22

52

14
0

�

��
�

�

��
�

��

�

ω
ω

Ψ

ω
ωΨ

ω
ω

ω

ω
ω

+
=

>−=
−

=

>−=

>−==

                                                                                                 (9) 

 
By making, the linearization of Eq. (8) in the equilibrium point ( )000 ,B,A Ψ

���

 we get the following linear system: 
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The characteristic polynomial of the matrix given in Eq. (10) is ( ) 02

2
1

3 AAAP +++= λλλλ , where 
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From Eq. (11) a long but straightforward algebraic computation gives 
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Therefore, from Eq. (9), (11) (12) we conclude that 0A1 > , 0AAA 321 >−  and 0A3 > . By using the classical Hurwitz 
criterion, see Meirovitch (1970), we conclude that all roots of ( )λP  have negative real parts. Hence, it follows from 
Averaging Theorem, see Guckenheimer and Holmes (1983), that Eq. (7) has an asymptotically stable periodic orbit.  

By using the same steps for the equilibrium point ),B,A( 100 Ψπ
���

− , we obtain that 0A3 < . Consequently, in the 
phase space of Eq. (7) there is an unstable hyperbolic periodic orbit.  

 
4. Analysis of the Results and Concluding Remarks 

 
As we are considering a DC motor, the parameter ( )ω1M  can be interpreted as depending of the applied voltage.  

Moreover, from Eq. (9), we necessarily have that 
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Note that Eq. (13) is a condition for the existence of self-oscillations of  Eq. (7).  Let us denote the maximum value of 

( )ω1M  by k  

From  Eq. (9)2 , which holds for the both cases, we get ( )ω10
2 MkBcos1 =−
�

. In view of the earlier Section , we 
obtain the following  diagram: 
 

 
                                                                             Figure 2 : Stability Diagram 

 
By using Eq. (9)3,4 we can plot the curve frequency x amplitude.  

 
                                                            Figure 3: Frequency x Amplitude curve 
  
In Fig. (3), the red line denotes the points on the graph where we have stability, in the other part  we have 

unstability.  Moreover, we have no jump  in the amplitude, in other words, there is no Sommerfeld Effect.  
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