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Abstract: It is common pratice nowadays with critical machinery to measure, either on-line or off-line, the vibration 
response at a number of suitable locations an to assess the state of health of the equipament based on observed 
changes in one or more ot the reponse parameters. Early diagnosis of potentially damaging faults or defects can lead 
to substantial cost savings. A model-based approach to the detection of mechanical faults in rotating machinery using  
Matlab® and Simulink is studied in this paper. For certain types of faults, for example, an increase in mass unbalance 
and changes in stiffness and damping, the Finite Elements Methods (F. E. M.) is utilized for developing and evaluating 
using computer simulation. 
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1. Introduction 

 
Rotating machines are essential components in most of today’s manufacturing and production industries. Because it 

is usually not practical or economical to the use redundant systems, real-time monitoring, fault detection and 
diagnostics for rotating machinery equipment is required. Common rotating machinery faults include self-excited 
vibration, due to system instability, and, more often, vibration due to some externally applied load, such as craked or 
bent shafts, mass unbalance or parameters variation of journal hydrodynamic bearings (stiffness and damping).  

In this paper, model-based techniques are developed for fault detection of faults in rotating machines. Model-based 
approach involves the establishment of a suitable process model, either mathematical or signal-based (Steffen, 1981; 
Oliveira, 1999 and Tadeo, 2003), which can estimate and predict process parameters and variables. Isermann (1994) 
described the main principles involved in model-based procedures an outlined the importance for realistic modeling of 
faults. He concluded that more than one method of FDI (Fault Detection in Isolation) should be utilized, in order to best 
reach an accurate diagnosis.  

Natke and Cempel (1991) used the definition that a fault will alter the dynamic behavior of a system, to construct a 
model to detect changes in this dynamic behavior and thus identify faults. Various physical parameters and model 
sensitivity to fault size are used to detect and locate faults.  

Model-based approaches which use statistical analysis (Chen, 2001) and artificial intelligence techniques (Eduardo, 
2003) or in the use of hybrid models for analysis of the dynamic behavior (Brito, 2002) play an ever-increasing role in 
the diagnosis of faults in dynamic systems, particularly in those systems where information may be scarce and estimates 
need to be made. The context of that work interferes in relation to the model-based techniques.  

The aim of this paper was to contribute for the development and application of programs computational (Matlab® 
and Simulink) capable to proceed to the dynamic behaviour of rotating machinery, with emphasis in the modellling and 
simulation of mechanical fault, with views to the monitoring of its operation and to its predictive maintenance. The 
good results of the example show the viability of further studies in this area. 

 
2.  Finite Element Modeling of Rotor-Bearing Systems 
 

Rotor-bearing systems are modeled as an assemblage of rigid disks, shaft elements of distributed mass and stiffness, 
discrete bearings and flexible supports. A finite element scheme based on Timoshenko beam theory is used to produce 
the equations of the shaft elements (Craig and Roy, 1981). The formulation accounts for the effects of rotary inertia and 
gyroscopic moments. The elements equations the equations of motion of rigid disk mounted on the shaft gyroscopic 
(Minh, 1981; LaLanne, 1998). 

For the simulation of rotor-bearing system, the classic finite element, the linear beam element, has been employed, 
with two deflections ( and ) and two rotations (y z ψ  e ϕ ) in the y- and z-axes, respectively, per node: 

{ }Tzzyyq 221221 ϕψ=  (2.1)

 
The mechanical system considered is a rotor with a flexible shaft coupled to a fixed end electric motor. Between the 

motor and the disc, there is a bearing of mass m1 fixed elastically. The Figure 2.1 show schematic model of the rotor-
bearing system 
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Figure 2.1. Schematic model of the rotor-bearing system 

 
2.1 Equations of motion of elements 
 
 The use of the Lagrange equations leads to the determination of the element equations of motion., 
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Here i  is the number of degrees freedom;  are generalized independent coordinates;  are generalized 

forces, and 

( Ni ≤≤1 ) iq iQ
“ . ” denotes differentiation with respect to time t. 

 
2.1.1 Finite Element of Rigid Disk 
  
 A typical rigid disk can be modeled as four-degree-of-freedom rigid body of small thickness. The governing 
equations of motion of a thin rigid disk follow form the kinetic energy expression of the disk and the unbalance forces 
due to the mass center eccentricities of the disk and the use of Lagrange equations. Thus, 
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 Expanding the equation (2.3), 
 

( ) ( )t

em

em
t

em

em

z

y

I

I
z

y

I
m

I
m

z

y

z

y

p

p

Ω

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω

Ω−
+Ω

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

Ω

Ω

=

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

Ω−

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

sen
0

0

cos
0

0

000
0000

000
0000

000
000
000
000

2
2

2
2

2
2

2
2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

ϕ

ψ

ϕ

ψ

&

&

&

&

&&

&&

&&

&&

 

 
 
 
 
 
(2.4)

 



 

where,  is the disk translation mass matrix;  is the disk rotational mass matrix;  gyroscopic matrix of rigid 

body;  is vector of acceleration;  is vector of velocities;  is vector of forces and moments;  is the disk 

translational mass;  is the polar mass moment of inertia;  and  are the mass center eccentricities of the disk in y 
and z directions. 
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2.1.2  Shafts elements  of length L1 and L2
 
 The shaft is represented as beam with a circular  cross-section, and is characterized by strain and kinetic energies. 
The resulting equation of motion associated with each element is given by 
 

( )tFqKqK dshaftdshaft =+ 31  (2.5)

 
where: 1shaftK  is the stiffness of shaft (element 1-Figure 1) that involve the length  , E Young’s modulus of the 

material and I moment of inertia. 
1L

3shaftK  is the stiffness of shaft (element 3-Figure 1) that involve the length  , E 
Young’s modulus of the material and I moment of inertia. 

2L

Expanding (2.5), 
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2.1.3 Bearing model   
 

The virtual work done by the forces due to the bearing acting on the shaft (LaLanne, 1998). The representation 
schematic of model of bearing journal is illustrated in Figure 2.2, 
  

 
 

Figure 2.2 – Model of bearing journal 
 



 

 In modeling a rotor bearing system a finite element node is normally chosen at a bearing location, Fig.1. Therefore, 
the equation of motion of such a rotor element that is in contact with the bearing is given by: 
 

  2222222 mmmmmmm FqKqCqM =++ &&& (2.7)

 
where: 2mM : is the bearing journal mass matrix; : is the bearing journal damping matrix;2mC 2mK : is the bearing 
journal stiffness matrix; : is vector of acceleration; : is vector of displacement; : forces in bearing 
journal. Expanding (2.7) 

2mq&& 2mq 2mF
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2.2 Assembly and system equations 
 
 In the previous sections the element equations are formulated for a typical element. The equations are then 
assembled to construct the global equation which describes the dynamics of the rotor-bearing motion are of the form, 
 

( ) ( ) ( ) ( ) ( )tHntSutQqtqPtqM +=++ &&&  (2.9)

 
where: M, P, and Q are the mass, damping and stiffness matrices of the system. The order of matrices is n x n, where 

, with n( ) be nnn 214 ++= e =number of elements, nb number of bearings. S and H are input matrices for the 
stochastic forces, unbalance forces. The vectors u(t) and n(t) representing the stochastic(white noise process) and 
harmonic forces. The vectors  are acceleration, velocities and displacement. ( ) ( ) ( )tqtqtq ,, &&&
 The matrices have the following internal structure (Eduardo, 2003) 
 

{ }221221 ImmImmdiagM =  (2.10)
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 In the Equation (2.12): 
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 In the table 2.1 shows the descriptions and values used in the simulations. 
 

Table 2.1 –Descriptions and values parameters 
 

Parameters Descriptions Values Units 
m1 Mass of bearing journal 15 kg 
m2 Mass of disk 10 kg 
I2 Moment of inertia transverse of disk 0.25 kg.m2

I2polar Moment of inertia polar of disk 0.50 kg.m2

L1=L2
Length between: motor – bearing journal and – 

bearing journal - disk 0.4 m 

K1 Stiffness in the direction YI 90.000 N/m 
K2 Stiffness in the direction ZI 120.000 N/m 
c1 Damping in the direction YI 30.000 kg/s 
c2 Damping in the direction ZI 37.500 kg/s 
Ω Rotation of rotor 60 rad/s 
e Mass center eccentricity of the disk  0,00001 m 

 
The input matrix S has the following internal structure in (2.9): 

 
{ }654321 ssssssST =  (2.15)

 
In which si (i= 1,...6) values constants. 
  

Table 2.2 – Values of input matrix 
 

Variables Values 
s1 1,2 
s2 1,0 
s3 1,0 
s4 1,2 
s5 1,0 
s6 1,0 

 
2.3 Representation of state space equation  
 

The state equation can be obtained, 

( ) ( ) ( ) ( )tEntButAxtx ++=&  (2.16)

 
Consider the state vector ( )tx , 
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where A is input matrix; B and E are output matrix.  
 
3. Numerical Simulation 
 

In the numerical simulation have been conducted using variation of the physical parameters (matrices M , P and 
 - Equation 2.9). Faults in the rotor can be detected by monitoring the variation of these physical parameters. The 

data obtained by the software Matlab & Simulink.  
Q

To simulate a failure the value of the parameter was varied in the range 10 - 90%. The system was simulated and the 
signals calculated. In the Table 2.3 show the conditions and physical parameters fault.  
 

Table 2.3 – Conditions and physical parameters fault 
 

Conditions Parameter fault 

1 Stiffness   1k

2 Damping   1c

3 Unbalanced mass 

4 Stiffness  2k

5 Damping  2c

 
 The Figure 3.1 show the methodology in modeling and simulation of mechanical fault in rotating machinery using 
MATLAB® and SIMULINK. 
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Figure 3.1– Bloch diagram using MATLAB® and SIMULINK. 

 
In the Figure 3.1 the rotating system is excited by harmonic and stochastic forces. The state space equation is 

obtained for conditions:  
• Normal (no fault);  
• Fault parameters (stiffness and damping);  
• Fault parameter mass unbalance.  

 
4. Results 
 

In order to simulate the conditions of faults in rotating system, ten-speed rotations conditions were obtained for 
parameters faults (stiffness, damping and mass unbalance) was studied (Figure 4). In the present work, the time domain 
vibration data was transformed to the frequency domain (FFTs) to obtain their spectra. The Figure 4.1 shows the 
responses obtained for fault mass unbalance. 
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Figure 4.1 – Responses of system for the fault unbalance mass 



 

It is interesting to note that amplitude (Figure 4) presents a constant variation (about of frequency 20 Hz). The others 
frequencys not occuried.  

In the frequency 80 and 120Hz, the amplitude presents significant variation (conditions unbalanced 2, 4 and 6) in the 
order of 60 - 90%.  

The Figure 4.2 shows the responses obtained for fault stiffness of bearing journal (direction y).  
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Figure 4.2- Responses of system for fault parameter stiffness of bearing journal 

It is interesting to note that amplitude (Figure 4.2) presents a significant variation (about of frequency 20, 40, 120 
and 140 Hz). The others frequencys not occuried. 
 
5. Conclusions 
 

This paper has presented model-based techniques in the context of modeling and simulation of mechanical fault 
rotating machinery. The aim of this paper was to contribute for the development and application of programs 
computational (Matlab® and Simulink) capable to proceed to the dynamic behavior of rotating machinery, with 
emphasis in the modellling and simulation of mechanical fault.  

A model based fault detection method for a stationary mechanical system was presented. The simulated model of a 
rotating system was utilized to demonstrated rotor parameter monitoring. Fault in the rotor can be detected by 
monitoring the variation of the physical parameters due to a comparison of the responses obtained. The analysis of the 
results is made by rotor system modeled with six degrees of freedom.  

Through these examples with good results, the viability of furthering the studies along these lines is demonstrated. 
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