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Abstract. The main objective of this work is to present and discuss some results obtained from our project and implementation of an 
integrated control system for a biped robot machine in the dynamic gait. We divided the integrated control system in two sub-

systems: a  control of the trajectories for the legs and  an automatic generator of trajectory for the trunk, which updates the 

conditions of position and speed for the trunk, from the evolution of the legs.   
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1. Introduction  

 
Basically, there are two major research areas in biped walking robot: the static gait and the dynamic gait. The static 

gait is characterized when the biped walking robot has the ground projection of its global center of mass (GCoM) within 
the foot-support area (support polygon or stability region). In this case, the localization of the center of pressure (CoP) 
is identical to the GCoM. Otherwise, the dynamic gait is characterized when the GCoM leaves the support polygon, but 
the CoP falls within the foot-support area (Goswami, 1999). When the GCoM is in front of the CoP, their distance 
provides a measure of stability which defines the static threshold of stability1. Existing inertial and gravitational forces, 
this distance adds torques that cause turns around the CoP and the possible fall of the biped walking robot. 

To assure the dynamic gait it is necessary to implement a dynamic control for the biped walking robot. The 
challenge is to endow the biped walking robot with a trunk (inverted pendulum) whose trajectory is planned to 
compensate torques inherent to the walking dynamic. Since the inertial and gravitational forces are considered, the 
dynamic modeling of the trunk considers the dynamic interaction between the inferior members and the trunk, 
establishing a system of non-linear equations whose input is the trajectories of the legs. If the trajectories of the inferior 
members are planned, the trunk’s trajectory can be determined (Li et al., 1992). 

The main objective of this work is to present and discuss some results obtained from our project and implementation 
of an integrated control system for a biped walking robot in the dynamic gait. We divided the integrated control system 
in two sub-systems: a control of the trajectories for the legs and an automatic generator of trajectory for the trunk, which 
updates the conditions of position and speed for the trunk, from the evolution of the legs.  
 
2. Biped Robot Machine 

 
We conceived our prototype of the biped walking robot by using the Solidworks® software (Predabon, E. and 

Bocchese, C., 2003), whose basic philosophy was to elaborate a three-dimensional prototype, divided in subsystems 
properly joined to impose the restrictions of the relative movements. The physical parameters (mass, volume, moments 
of inertia, etc) of the prototype are calculated automatically, from the characteristics of the materials to be used, from 
the forms, geometric dimensions and coordinate systems.  

The biped walking robot comprises 7 links (two ankles, two lower legs, two upper legs and a hip) interconnected by 
10 revolute joints, which constitute the legs. Solidary to the hip there is an inverted pendulum, with 2 perpendicular 
revolute joints that allow a three-dimensional pendulum movement. Figure 1 illustrates the biped walking robot. The 
Cartesian coordinates systems were distributed by employing Denavit and Hartemberg’s rules. In this case, links and 
joints are marked in a systematic way.  

                                                           
1 This technical term is used in aeronautics area.    
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Figure 1.  Biped walking robot. 

 
 Table 1 presents the information about the physical parameters of the model. The nth link has its moment of 

inertia computed in relation to the nth Cartesian system, located in the corresponding center of mass. The crossed 
moments of inertia are null. 

 

Table 1. The physical parameter of the biped walking robot. 

Length Mass, 
kg 

Moments of inertia, kg 
m2. 

Center of Mass, m. %  
 

×10-3 ×10-2 ×10-3 ×10-2 ×10-2 

Link-j ej mj I11 I22 I33 xC yC zC mj/MT 

 
Coordinates 

system 

0 36 51 4 4 0 -2 0 -4 335 SC0 

1 61 93 3 1 3 -1 0 0 610 SC1 

2 316 88 1 9 9 -7 0 0 577 SC2 

3 316 112 2 11 10 -9 0 -1 735 SC3 

4 110 98 3 3 3 -3 0 -2 643 SC4 

5 316 65 8 2 6 0 0 -1 427 XYZ 

6 110 98 3 3 3 3 0 2 643 SC5 

7 316 112 2 11 10 9 0 1 735 SC6 

8 316 88 1 9 9 7 0 0 577 SC7 

9 61 93 3 1 3 1 0 0 610 SC8 

10 36 51 4 4 0 2 0 4 335 SC9 

11 680 575 0 430 430 52 -2 -1 3773 XYZ 

Total  Mass, MT 152
4 

 

3. Dynamic Model  

 
We considered the biped walking robot as a mechanism in an open chain. By using the formalism of Denavit-

Hartemberg to describe its kinematics characteristics, we derived the inverse kinematics and the dynamic modeling. For 



 

the dynamic modeling, the software Maple® V (Keith, G. et al., 1997) was used to implement the formularization of 
Newton-Euler (Craig, 1995), which permitted the automation of the process of symbolic modeling (acronym 
NEROBOT). The basic data necessary to use the program NEROBOT are: the parameters of Denavit-Hartemberg, the 
moments of inertia, the mass, and the center of mass of each link. The result is a dynamic model in the matrix form, 
given in Eq. (1). 

 

[ ] ( ){ } ( ) ( )( ){ } ( )( ){ } ( )( ){ } ( ){ } ( ){ } ( ){ }ttMttFtGt,tCtD ∆τθθθθθ −−=+++ &&&&&                                                    (1) 

 
Where: 

 [D] Matrix mass; 
 {C} Coriolis e centripetal forces vector;  
 {G} Gravitational forces vector; 
 {F} Dissipative forces vector; 
 {τ} External forces vector; 
 {M} External moment vector; 
 {∆} Generalized forces of reaction vector between hip and trunk; 
 {θ} Angular position vector. 
  
We consider the biped walking robot as two subsystems: the legs and the trunk (inverted pendulum). The interaction 

between the subsystems is caused by the generalized forces of reaction in the joint between the trunk and the hip, which 
is caused by their relative movements. Thus, we admit that the dynamics of the mounted inverted pendulum on a car in 
movement represents the main characteristics of coupling between these subsystems. 

Using the NEROBOT, we obtained the dynamic model of the legs, presented in the literal form, due to the 
complexity and the great extension of its model. For simplifications we considered {M} = 0 in Eq. (1), resulting Eq. (2). 

 

[ ]{ } ( ){ } ( ){ } ( ){ } { } { }∆τθθθθθ −=+++ &&&&& FG,CD                                                                                                         (2) 

 
By using the NEROBOT, a dynamic model for the trunk was derived, according to Eq. (3) and Eq. (4). 
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Where: 
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Analyzing Eq. (3) and Eq. (4) we can conclude that the terms of the left and of the right side of Eq. (3) are related to 
the dynamic of the legs of the biped walking robot and to the generalized forces of reaction vector, respectively. The 
generalized forces of reaction vector are the disturbances to the movement of the biped walking robot. Similarly, the 
terms of the left and the right side of the Eq. (4) are related to the dynamic of the inverted pendulum and to the 
generalized forces of reaction vector (which is considered a disturbance to the movement of the inverted pendulum), 
respectively. So, Eq. (3) and Eq. (4) show the influences of the movements of the dynamic legs in the movement of the 
inverted pendulum and vice-versa. 
 
4. Integrated Control System 

 

The integrated control system is formed by two subsystem controls: the first, which uses feedback linearization and 
adaptive control approach and, the second which is an automatic generator of trajectories of the trunk. Similarly to the 
control of the trajectories of the legs, the trajectories of the trunk are controlled by the computed torque technique 
(Craig, 1995) whose control law possesses the terms of the nominal model of the robot, the reference model and the 
uncertainties. Neural networks using radial basis functions (RBF) provide the on-line identification of the uncertainties. 
The automatic generator of the trajectories of the trunk uses a recurrent neural network (RNN) that manipulates the 
positions and velocities of the legs to compute the positions for the trunk, based on the zero moment point (ZMP) 
criterion. Figure 2 illustrates the proposed scheme for the integrated control system.    
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Figure 2. Scheme for the Integrated Control System. 

 
4.1 Feedback linearization and the adaptive control approach 

 

4.1.1 Project of the Reference Model 

 

One can consider a second-order reference model, whose locations of the poles in the complex plan agree with the 
project specifications, so that the servomechanism simulates the analogous behavior of the standard second-order 
systems (GE, et. al. 1998). This control technique is similar to the supervised learning. The reference model provides 
the desired patterns (targets) for the input (references trajectories). The desired patterns are compared with the 
respective measured variables of the biped walking robot. The error between the desired patterns and the measured 
variables is used to adjust the parameters of the compensator and of the model of the plant. 

By considering a second-order model for each degree of freedom, Eq. (14) represents the reference model in the 
state space form. 
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4.1.2 Project of the Adaptive Control System  

 
Equation (20) represents a biped walking robot in the state space form, in which, to simplify the notation, the 

dependence of the angular variable was suppressed. 
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{ } { } { } { }( )FGC ++−=
∆

Γ  Non-linear terms of the model of the robot                      (24) 

 
By admitting that the uncertainties are null, Equation (25) defines a control law that includes terms of the dynamic 

model of the robot and the reference model.  
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Using Eq. (20) into (25) results: 
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Equation (26) describes a linear, stable and not-connected model. The error of tracking is defined as mathematical 
difference between equations (26) and (14): 
 

Diagonal matrix with n products between ζ 
(damping factor) e ω (natural frequency)  
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Where: 
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By analyzing Eq. (27), the asymptotic tracking is guaranteed by an adequate choice of the matrix associated with the 

state vector for the reference model. However, it is necessary the full knowledge of the dynamics of the plant to be 
controlled, in order to make it possible to cancel the nonlinear effect of the model. 

 
4.1.3 Inclusion of the parametric uncertainties  

 
The full knowledge about a dynamic model is restrictive enough to the practical application. Thus, the related 

parametric uncertainties to Eq. (20) are admitted, which disables the exact cancellation of this term. Thus, Eq. (25) can 
assume the following form (Ge, et al., 1998). 
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Where: 
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[v]      Regression matrix; 
 

{ρ}      Parameters vector; 
 

{ }ε       Error of estimation;  

 
{ }κ       Gain vector; 

 
( )•sgn      Signal function; 

 
{ }e       Error of the model  

 
Using Eq. (20) into Eq. (29) results: 
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Using Eq. (33) into Eq. (31) follows: 
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The mathematical difference between equations (34) and (14) is: 
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&                         (35) 

 
Analyzing Eq. (35), we can conclude that the objective of the ττττR term is to suppress the error in the process of 

identification of the estimated term (Eq. 32).  



 

Equation (32) is constructed by using the Radial Basis Function (RBF) Neural Network, which enables nonlinear 
mapping. The adaptability of its parameters can guarantee the stability of the control system in a closed loop, in the 
Lyapunov sense. Equation (36) can gives the estimated term vector. 
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Where the k-th component is: 
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According to GE et al. (1998), the stability in the Lyapunov sense can be assured by rewriting Eq. (35), using       

Eq. (36). 
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Lets us consider the following Lyapunov function: 
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Where: 

 

[P]=[P]T  Solution of the Lyapunov equation: [ ] [ ] [ ][ ] [ ]QAPPA T −=+ ;                    (40) 

[Π]i   Constant matrix definite positive                                                 (41) 
 
Taking the time derivative of the Eq. (39) and using Eq. (38) results: 
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According to Eq. (42), Eq. (43) is the adaptability law for the parameters of the RBF net, which assures the stability 

in closed loop.  
 

{ } [ ] { } { } [ ]{ } [ ] 1i
T

iii DbPev
−−= ρΠ&                          (43) 

 
Using Eq. (42) into Eq. (43) results: 
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Using Eq. (31) and Eq. (40) to rewrite Eq. (44) results: 
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The matrixes [P] and [B] are definite positive and [D] is a non-singular matrix. Equation (45) is definite negative if 

the components of matrix [k] are chosen according to Eq. (46).  
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So: 
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4.2 The automatic generator trajectories of the trunk  

 

Commonly, the biped walking robot is endowed with a trunk (inverted pendulum) to compensate the inertial and 
gravitational forces intrinsic to the dynamic gait. However, this addition causes inherent problems to the stability. First, 
there is the problem to keep the trunk under control in the vertical position, which can be solved by employing a 
servomechanism, as presented in section 4.1. The second problem is related to the generation of trunk’s trajectory that 
can assure postural stability. It is worthy to consider the dynamic of the contact between the support foot and the 
ground. The ZMP criterion can provide a system of nonlinear dynamic equations to obtain the trajectories of the trunk  
(Takanishi, 1989).  

The second problem was solved by Gonçalves and Zampieri (2003), who employed a recurrent neural network 
(RNN) to generate the trajectories of the trunk in the automatic form, based on the ZMP criterion. An identification 
scheme was presented to obtain the parameters vector of the RNN, utilizing a first-order standard back-propagation with 
momentum. This way, a compensative trunk motion makes the actual ZMP get closer to the planned ZMP.  

Here, we utilized the same scheme, using an RNN with 2 intermediate layers, and 20 neurons in each layer. The stop 
criterion was 0.0001 m that is the mean-square error between the actual ZMP and the planned ZMP. 

 
5. Simulations and Results 

 
The biped walking robot was divided in two subsystems: trunk (inverted pendulum) and the legs. The dynamic 

model of the biped walking robot is defined by equations (2), (3) and (4). These equations were implemented in 
Matlab/Simulink®, by using the S-functions (Harman, T. L. and Dabney, J. B., 2003). Figure 3 illustrated the 
disturbances caused by the trunk in the legs (Disturbance-Trunk) and vice versa (Disturbance-Legs). The connection 
named "u-trunk" receives the trajectories of the trunk from the generator of trajectories for the trunk. The connection "u-
legs" receives the planned gait from the gait automatic generator.   

 

 
 

Figure 3. The biped walking model implementation. Figure 4. Implementation of the integrate control system. 
 
Figure 4 illustrates the integrated control system for the biped walking robot. The block "Biped-Model" contains the 

models of the subsystems and the disturbances. The adaptive control systems for the trunk (ACS-Trunk) and for the legs 
(ACS-Legs), in despite of independent, are similar. They receive the angular signals of position and speeds that are 
compared with the corresponding trajectories planned by the gait automatic generator. The automatic generator of 
trajectories for the trunk receives the angular signals of position and speeds from both subsystems, to compose the input 
signals to the RNN. 

For the simulation, we utilized a gait with the following characteristics: the pelvis remains parallel in relation to the 
ground, the step length is 0.17 m, the speed walking is 0.55 m/s, the angle between the foot and the ground is 0.2 rad 
and the maximum height for the balancing foot is 0.0386 m. The total time to complete a step is 0.9 s. Twenty percent 
of this time is expended in the bi-support phase.  

For this gait characteristic, the angular positions were computed by using inverse kinematics techniques, and the 
speeds, by employing Jacobian computation. The results were presented in Fig. 5 and Fig. 6 that describe the angular 
and the velocity trajectories for the first (θ1), second (θ2), third (θ3) joints, and so on. 

 



 

  

Figure 5.  Angular position for the legs. Figure 6.  Angular velocities for the legs. 

 
Figure 7 shows the trajectories for the angular position and velocity of the trunk that were used for the reference of 

the trunk. The RNN decides the problem of the angular positioning the trunk and the angular velocities the trunk are 
decided from the reference model.  

Figure 8 shows the tracking errors obtained from the control system of the trunk. The angular position error is 
around the ± 1.5××××10-3 rad and presents a decreased oscillatory behavior. The corresponding angular speeds present 
similar behavior. 

 

 

Figure 7.  Reference signals for the trunk. Figure 8. Tracking errors for the trunk. 

 
Figures 9 and 10 present the corresponding errors ( jjjE θ−θ= ) of tracking of the position and the velocities 

associates to the legs, respectively. The angular position errors are limited around 0.06 rad in the beginning of the 
movement, reaching around 0.02 rad in approximately 0.1 s and around zero rad after 0.2 s (with exception of the 
balancing leg). Similar behavior is verified for the corresponding velocity errors. 
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Figure 9. Tracking error of the legs’ position. Figure 10. Tracking error of the legs’ velocity. 

 
6. Conclusions and Comments  

 
This work aimed at contributing to the area of biped walking robots that explore the dynamic gait. A biped walking 

robot endowed with trunk was conceived, composed by a chain of rigid links interconnected by rotating joints, 
totalizing twelve joints that enable positioning in the three-dimensional space. For the symbolic modeling, we 
implemented the formalism of Newton-Euler in the environment of  Maple®, offering an automatic symbolic modeler. 

We projected and implemented the integrated control system. The control law includes terms of the dynamic model 
of the robot, of the reference model and of the uncertainties. An RBF neural network was used for the on-line 
identification of the parametric uncertainties. An automatic gait generator, adaptable to the local conditions of the land, 
was conceived and implemented, functioning perfectly in terms of passage speed, length of the step and maximum 
height for the foot in balance. After planning the gait, the trajectory for the trunk was determined by a RNN, integrated 
to the control system, which could update the angular positioning of the trunk from the evolution of the legs. The 
system of control and the automatic generator of trajectories for the trunk constitute adaptive mechanisms, developed to 
solve the dynamic gait control. 

In the simulation, we synthesized a gait for the robot with similar requirements to those of the human being gait, 
with a walking speed of 2 km/h. By using the inverse kinematics computation, the corresponding angular position was 
computed. The angular speeds were computed by using Jacobian matrix, as shown in Fig. 5 and Fig. 6. 

The integrated control system presents a steady behavior and, besides tracking signals of reference for the legs and 
for the trunk, allows to reject the disturbances caused by the coupling between the legs and trunk.  
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