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Abstract. In this paper we propose two new strategies to experimentally identify impact forces in flexible structures by 
analyzing the measured vibration response. The first strategy is based on the use of a proportional-integral observer 
(named also, P-I  observer). The main feature of this non-conventional observer is its capacity to estimate not only 
state variables but also disturbances in dynamical systems. Application of this observer to the problem of impact in 
flexible structures have as advantage the ability to perform identification of impact forces in an online manner. The 
estimation by the P-I observer is compared with the estimation obtained by other proposed strategy which uses the 
linear optimal control theory results to develop an algorithm to estimate impact forces. With the purpose of verify 
experimentally the effectiveness of the proposed strategies, both methods were applied in an experimental test rig 
implemented at the Laboratory of Vibrations in the PUC-Rio University. The performances of both methods are 
compared and conclusions about advantages and disadvantages are underlined. 
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1. Introduction  
 

In some engineering applications it is necessary to determinate experimentally impact forces in flexible structures in 
order to monitor structural damage and to characterize impact. However, sometimes it is not possible to instrument the 
impactor to measure directly the impact force and, because of this, the alternative is to determinate experimentally the 
impact force through the use of indirect methods, i.e. by analysis of the measured vibration responses of the flexible 
structure (Gaul and Hurlebaus, 1999). This problem is an Inverse Problem and could be stated as follow: Find the 
impact force (input) that gives a given response (output) for a flexible structure. It is important to remark that 
identification of impact forces is a hard problem mainly because of the short duration of the impact event.  

In this paper we propose two new strategies to identify impact forces in flexible structures and they are applied in an 
experimental test rig. This work is organized as follows . Section 2 describes the first of the two proposed strategies. It  
is based on the use of a proportional-integral observer which is a robust observer that not only reconstruct the states of 
dynamical systems but also is able to estimate disturbances (Müller, 1995). Application of this observer to the problem 
of impact in flexible structures is new to the best of the authors knowledge. In section 3 the second strategy is 
explained, which consist of an algorithm based on some results of the linear optimal control theory. Section 4 describes 
the test rig constructed at the Laboratory of Vibrations in the PUC-Rio University to experimentally validate the 
methods developed in this paper and also discuss and compare the results obtained with the two methods. The 
advantages and disadvantages of  both methods are discussed. Finally, in section 5, the main conclusions of this work 
are underlined. 
 
2. Impact force identification by proportional-integral observer 
 

State observers are auxili ary dynamical systems which are designed to reconstruct the full state vector of a given 
dynamic system from partial information of the state, i.e. some state variables. Observers are extensively used in 
modern control applications. The full -order Luenberguer observer (Ogata, 1993) is the kind of observer most commonly 
used in practice, however, in the literature, we can find many other kinds and variations of them (Valer, 1999). One of 
those is the proportional-integral observer (named also, P-I observer) which is a robust observer developed to 
reconstruct the state vector of a given dynamical system even in presence of some unknown inputs or disturbances 
(Linder, 1997 and  Müller, 1995).  As a consequence of the process of the robust state reconstruction, the P-I observer 
internally estimates and compensate the unknown inputs, i.e. the disturbances. The abilit y of this observer to estimate 
disturbances have been shown to be useful to compensate nonlinearities (like friction and backlash when modeled as 
disturbances) in some dynamical systems (Söffker and Müller, 1995). However, the P-I observer is relatively new when 
compared to the other kinds of observers and its potential have not been fully exploited yet, especially in mechanical 



engineering applications. We propose here the use of this observer to solve the problem of impact force identification in 
flexible structures. 
 
2.1. The P-I Observer 

 
Let us consider the following linear time-invariant dynamical system: 
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where nR∈x  represents the state vector of the system, mR∈y  ( nm ≤ ) the vector of output variables or 

measurements, rR∈u the known input vector and sR∈d  the unknown input vector, i.e. the disturbance vector. The 

system matrix A , the input matricesB , dB  and the output matrix C  are of appropriate dimensions and they are 

assumed known. The Eq. (1) can represent the dynamics of a flexible structure (Meirovitch, 1990) where y  represents 

the measured vibration response that can be obtained through the use of sensors (for example: strain gages, 
accelerometers, or proximity sensors like it was made in our experimental test rig). The impact force to identify is the 
unknown input, then it is represented by the vector d . Note that, even though the disturbance vector is considered 

unknown, its location, given by the vector dB , is not. Based on the system defined by the Eq. (1), the corresponding  

P-I observer equations can be now written (Valer, 1999; Müller, 1995): 
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where  nRˆ ∈x  represents the reconstructed state vector for the system �  and  sRˆ ∈d  the estimated disturbance 
vector. Note that the observer only uses as input the available signals, i.e. the measurement vector y  (partial state 

information)  and  the known input vector u , if any. A schematic representation of structure of the P-I observer is 
showed on Fig. 1.  

 
 

 
 

Figure 1. Structure of  the P-I observer 
 
As it can be seen from the Fig. 1, the structure of the P-I observer is similar to the classic full-state proportional 

observer (Friedland, 1996) but with an additional integral loop that allows an internal estimation and compensation of 
the disturbance vector in the state reconstruction process. A necessary condition for estimation of disturbances by using 
P-I observer is that the number of available independent measurements be greater or equal than the number of unknown 

inputs (Saif, 1997). In other words, if C  and dB  are full rank matrices, the necessary condition is: ms ≤  . The 

matrices, PK  (proportional) and IK  (integral) are the observer gains and the determination of suitable values for them 

is part of the observer design. To make it easy, let us rewrite the Eq. (2) as follow: 
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This way, the P-I observer looks like a classical proportional observer. From here, it is clear that if the pair 

( aA , aC ) is observable, the poles of the observer state matrix, which is defined by: 
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can be allocated arbitrary by choosing the matrix aK . Then, either the conventional methods for pole allocation or the 

Kalman Filter method (Meirovitch, 1990) can be used to determinate an appropriate gain matrix aK  and, from  Eq. (5), 

the proportional and integral gains,
P

K  and IK , are also determined.  In the section 4, the P-I observer will be applied 

to experimentally estimate impact forces in a flexible structure when the impact forces are treated as disturbances. 
 

3. Impact force identification by an algorithm based on the linear optimal control 
 

By using some results of the linear optimal control theory it is possible to develop a algorithm that is able to 
estimate impact forces in flexible structures. To do it, first formulate the optimal tracking problem and then interpret it 
as an inverse problem. For simplicity, in this section, the algorithm will be explained by using discrete-time versions for 
the dynamical systems. Let us consider the following discrete-time dynamical system that represent the flexible 
structure: 
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where n
k R∈x  , m

k R∈y   and s
k R∈u ,  for 1≥k   are the state vector of the system, the vector of output 

variables and the input vector, respectively. The system matrix A , the input matrix B  and the output matrix C  are of 

appropriate dimensions and they are assumed known. Additionally, let us consider a  reference signal 1, ≥kk
ry   

such that it is desired that the system response ky  track this reference signal. The optimal tracking problem consist of 

finding a input vector ku   for  1≥k  ,  that  minimize the following quadratic performance measure: 
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with 
 

1, ≥−= kkk
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where N  is a integer number that represent the index of the final time. The matrices Q , R  are symmetric positive 

definite and P  is symmetric positive semi-definite. They define the performance measure to be minimized in Eq. (8) 
and they are free parameters that must be chosen by the designer. The solution to the optimal tracking problem can be 
found in advanced books on control theory for example in Lin (1994). For simplicity we only present the results: 
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and the feed-forward vector  kv  and the matrix  kS  are determined by the following difference equations: 
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Note that, these equations must be solved backward. By using Eq. (10) the optimal control input ku  can be 

computed but it requires the full state vector kx , which is, in most of the cases in practice, not available. To overcome 

this problem, we will use a classical observer which is defined by the following equation (Friedland, 1996): 
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then, the estimated state vector kx̂  is used instead of kx  in Eq. (10).  This way, we can compute the input ku  that 

drives the output of the system 
�

 along a desired  trajectory k
ry  in a optimal way, to the minimize the performance 

measure given in Eq. (8). At this point, let us reinterpret the last sentence as follows: Given a measured system response 

k
ry  for the system 

�
 known on an interval Nk ≤≤1 , we can compute the input ku  that provoke such response. It 

is not hard to realize why Eqs. (10)-(15) can help to compute that input ku . Backing to our problem of the estimation of 

impact forces, we can consider that  k
ry  is the measured vibration response of a flexible structure whose dynamics is 

represented by the Eq. (7) and  the computed  input ku  is the estimated impact force. In the following section we will 

test the effectiveness of this strategy. 
 
4. Experimental setup and results 
 

In order to experimentally validate the two methods described in the previous sections when applied to the problem 
of estimation of impact forces in flexible structures, it was constructed a test rig at the Laboratory of Vibration in the 
PUC-Rio. Fig. 2 shows a diagram for the experimental setup. 
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Figure 2. The experimental setup 
 

As it can be seen,  the system consist of a one-sided clamped flexible beam which is subject to an impact load near 
to its free end. The beam material is steel and the main dimensions of the test rig are presented on Tab. 1. 

 
 
 



 

Table 1. Dimensions of the experimental test rig * 
 

bL  bb  bt  sL  impL  

0,510 0,025 0,005 0,320 0,390 
                * all dimensions in meters. 

  
The impactor consist of an instrumented hammer Endevco Model 30927 which has a piezoelectric force sensor on 

the head (sensitivity 0,4363 mV/N). The measurements obtained by the force sensor will be useful to evaluate the 
performance of the methods used to estimate impact force. As vibration response sensor was used a inductive proximity 
sensor Balluff BAW 018PF1K located away from the impact point (bandwidth: 1,5 kHz). This sensor allows us to get 
information of the vibration of the flexible beam in the form of displacements.  
 
4.1. Experimental results 
 

The data were acquired through a spectral analyser equipment, Hewlett Packard model 3566A. The sampling rate 
used was 30 � �������	�	
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force detected by the sensor assembled on the head of the hammer, starts with a total acquisition time of 125 ms. The 
proximity sensor measures the displacements of a fixed point on the flexible beam to a fixed distance from the clamped 
end and the measurements fell inside the sensor linear range. Figure 3 shows the sort of data that were acquired by the 
analyser. As it can be seen from this figure, noise was detected on the measurements. 
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Figure 3. Experimentally measured vibration response and impact force 

 
4.1.a. Results obtained with the P-I observer 
 

Because the state observers are model-based estimators, prior to use the method, it is necessary to obtain a 
dynamical model of the flexible structure. To this, it was used the Finite Element Method (Inman, 1996) to model the 
one-side clamped flexible beam, considering 10 Euler-Bernoulli beam elements and no damping. The result was a 20 
modes model. Later, this model was transformed to use modal coordinates and after that it was reduced to retain only 
the first five modes. Good agreement between the experimental and theoretically determined natural frequencies was 
verified. By expressing the dynamical model in the space-state form, we arrived to the form of the Eq. (1).  

The next step was to implement the P-I observer given in Eq.(2). To do this, a program in the Simulink®/Matlab® 
environment was done and it is shown in the Fig. 4. 
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Figure 4. Simulink®  program used to estimated impact forces by using the P-I observer technique 



 
The observability condition of the pair ( aA , aC )  was verified and the observer gains 

P
K  and IK  were 

determined by using the algorithm described in section 2 and the Ricatti equations resulting from the Kalman Filter 
method (Valer, 1999). After some trial and error tests, the final values of the gain matrices are chosen to the reconstruct 
satisfactory  the measured displacement y , i.e. to approximate y   to  xCy ˆˆ =  . The results are shown on Fig. 5. As 

can be seen, a very good agreement between the reconstructed variable and measured variable was achieved. 
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Figure 5. Reconstructed displacement by using the P-I observer technique 
 

The estimated impact force obtained by the P-I observer is showed on Fig. 6. As it can be seen, there is a delay 
between the signals of the measured impact force and its estimated values which was expected because the integral 
action of the observed acts as a low pass filter introducing some phase-lag. However, in general terms, the performance 
of the P-I observer was acceptable because it was able to detect the impact force. 
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Figure 6. Impact force estimation by using the P-I observer technique 
 

It is important to remark that, these results were obtained through offline computations, but the P-I observer, as 
showed in Fig. 4 can, without any changes, be implemented in an online manner (i.e. in real time). So, the presented 
method could be very useful to detect impact forces in some industrial or aerospatial applications, or even to implement 
impact/force control systems (Valer, 2004). 
 
 



 

4.1.b. Results obtained with the algorithm based on optimal control 
 
Now we apply the algorithm proposed on section 3 to our experimental test rig to test its performance. The same 

dynamical model for the flexible beam that was used to construct the P-I observer will be used here. As said in section 
3,  it is necessary to choose appropriate values for the symmetric matrices 0Q > , 0R >  and 0P ≥ . For simplicity 
these were chosen as follows: 

 

IQ q= ,  IR =   and 0P =  

 
With this choice we have reduced the number of free parameters to only one, the scalar q . The equations (10)-(15) 

are used are implemented using Matlab®. It include the backward integration of equations (13)-(14). Due of this 
backward integration, the algorithm can only be implemented off -line, i.e. after that the vibration measures signals have 
been acquired and recorded in some interval time. The free parameter q  was determined to achieve a good agreement 

between the measured beam displacement and the reconstructed signal y  computed by Eqs. (7). After some trial and 

error tests, the value 10108×=q  was chosen. The results for the reconstructed displacement is shown in Fig. 7 and the 

results for the estimated impact force is showed in Fig. 8. 
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Figure 7. Reconstructed displacement by the optimal control method 
 

0 0 ,02 0 ,04 0 ,06 0 ,08 0 ,10 0 ,12
-1 ,0

-0 ,5

0

0 ,5

1 ,0

1 ,5

2 ,0

2 ,5

3 ,0

3 ,5

4 ,0

F
im

p
a

c
t  

[N
]

t  [s]

Ident i f ied

Measu red

 
 

Figure 8. Impact force estimation by the optimal control method 
 

As can be seen, there is a very good agreement between the measured impact force and the estimated one. It shows a 
superior performance that the P-I observer method but has the disadvantage of the off line implementation. 



5. Conclusions 
 

This work presented two new methods to estimate impact forces in flexible structures, which when implemented in 
an experimental test rig showed to be effective. These methods have advantages and disadvantages. The second method, 
based on some results of the linear optimal control, produces better estimates for impact forces histories than the first 
method, which is based on a P-I observer. However, the first method can be implemented through either online (real 
time) or off line computations but the second method can be only  implemented through off line computations. Both 
methods seem promising to estimate impact forces in flexible structures. Future research will considerate applications in 
more complex flexible systems. 
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