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Abstract: Hybrid active-passive damping treatments combine thabéify, low cost and robustness of viscoelastic
damping treatments and the high performance, modal seteatind adaptive piezoelectric active control. The main
difficulty when associating such active and passive dampieghanisms is that active controllers are generally very
sensitive to system changes while viscoelastic materialsepties are highly frequency-dependent. In additionsimo
modern control techniques require a time-domain modelas@ntation. This can be solved through the use of internal
variables viscoelastic models, such as the Anelastic Bégghents Fields (ADF) and the Golla-Hughes-McTavish (GHM)
Unfortunately, they increase considerably the order oftioelel as they add internal variables to the system to conapens
for frequency dependence. Hence, a model reduction meshamtinally required. The present work presents alternative
reduction methods for internal variables-based visca@dsE models. This is done through a physical interpretatio
of the dissipative modes and their coupling with structwiration modes in the second-order models. The resulting
reduced-order models are then compared in terms of perfoo@and computational efficiency for passive constrained
layer damping treatments.
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1 Introduction

Several studies have shown that combining active and asaiwtrol is often a better solution for structural vibratio
damping. The main reason stems from the possibility of caimbithe reliable, low cost and robust passive damping
and the high performance, modal selective and adaptiveeactintrol. One of the most promising active-passive damp-
ing mechanisms is obtained by including piezoelectric @&cits in the standard viscoelastic constrained layer dagnpi
treatments. These active-passive treatments may be aptirbly varying the relative positions of viscoelastic |ayand
piezoelectric actuators (Trindade and Benjeddou, 2008 main difficulty when associating such active and passive
damping mechanisms is that active controllers are gegaraty sensitive to system changes while viscoelastic rizdser
properties are highly frequency-dependent. In additiazgtrmodern control techniques require a time-domain maqgel r
resentation. Therefore, methods such as the Anelastiddemments Fields (ADF) proposed by Lesieutre and Bianchini
(1995) and Golla-Hughes-McTavish (GHM) proposed by Gofld &lughes (1985) and McTavish and Hughes (1993)
have been applied to this active-passive treatments, giegeare able to model the frequency dependence of stifmass
damping properties of viscoelastically damped structiréise time-domain (Trindade, Benjeddou and Ohayon, 2000).
was shown that both ADF and GHM are effective for time-donaaialyses of highly damped structures. Unfortunately,
they increase considerably the order of the model as thejnselthal variables to the system to compensate for frequenc
dependence. Hence, a model reduction method is normallyrezh)

There are mainly three strategies published in the liteegtr the reduction of viscoelastic finite element (FE) nisde
with internal variables. The first one consists in applyiogne reduction method to the undamped structural FE model
before adding the internal variables, which has the adgenté handling smaller matrices but generally leads to erro-
neous or less precise estimations of viscoelastic damgtrigwell and Inman (1999) considered reducing the order of
the physical FE model, through a system equivalent redu@igansion process (SEREP), before and after assembly,
previous to introducing the extra dissipation coordinédeshe GHM method. The second reduction strategy congists i
applying a reduction method to the second order augmenteddetel, after inclusion of internal variables. Park, Inman
and Lam (1999) have studied Guyan reduction method to reatlecarder of a FE model augmented by GHM viscoelastic
dissipation coordinates, but they show that the methodparpoorly. The third strategy is based on the applicatioa of
reduction method to the augmented state space systens tif&ii inclusion of the internal variables and transforomat
to the state space form. This has the advantage of allowmgpbplication of modern reduction methods, developed for
state space systems, such as internal balancing methokl, IRa@an and Lam (1999) and Friswell and Inman (1999)
applied an internal balancing method to a state space sysigmented by GHM dissipation coordinates. Friswell and
Inman (1999) also applied eigensystem truncation for coismpa.

The present work presents an alternative reduction mettroidternal variables-based viscoelastic FE models. This
is done through a physical interpretation of the dissigatiodes and their coupling with structural vibration moaethé
second-order model. The objective is to allow a reductiahefextra dissipative coordinates before transformatidhe
state space system, so as to provide faster computatiofiee gaduction of the state space system as a second reduction
phase. The resulting reduced-order model is then compareims of performance and computational efficiency with
full-order models for passive constrained layer dampiegtinents.



2 Finite element model

In a previous work (Trindade, Benjeddou and Ohayon, 200d dpite element model able to deal with sandwich
beams with viscoelastic core and multilayer faces was ptede The laminated faces were supposed to behave as
Bernoulli-Euler beams while Timoshenko hypothesis waained for the core, to allow shear strains to occur in the vis-
coelastic material layer. Three-dimensional constitutivatrices are considered for each material and then tramsfb
according to the layer orientation in tixg plane. The transformed three-dimensional constitutivérioes are finally
reduced using they plane-stress assumption. Consequently, composite mladeientation is properly accounted for in
the FE model. The assembled equations of motion may be wegdTrindade, Benjeddou and Ohayon, 2001a)

whereq is the dofs vector, composed by the nodal axial mean andveldisplacements, deflections and bending rota-
tions. g andg are respectively the velocity and acceleration vectigrss the mass matridD is a viscous damping matrix
introduceda posterioriandF is a mechanical perturbation inpwK.y is the part of the stiffness matrix corresponding to
the contribution of the viscoelastic material, which isgiuency-dependent, amt is the stiffness matrix corresponding
to the remaining contributions in the structure.

The frequency-dependence of the viscoelastic materialodeted through the Lesieutre’s ADF model (Lesieutre
and Bianchini, 1995). The ADF model is based on a separafigheoviscoelastic material strains in an elastic part,
instantaneously proportional to the stress, and an aretast, representing material relaxation. This could bgiag to
Eq. (1) by replacing the dof vectarby g =q— 3 qf’ in the viscoelastic strain energy® andqid represent the dof vectors
associated with the elastic and anelastic strains, ragpbctAdding a system of equations describing the time-diom
evolution of the dissipative dco:ﬁJI to Eq. (1), we get

MG+Dg+(Ke+K7)a—KY Y off =F (2)
1
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whereKy = GuKy, for Ge, = Go(1+3;4i) andC = (1+ 3;Ai)/Ai (Lesieutre and Bianchini, 1995). ADF parameters
Go, A andQ; are evaluated by curve-fitting of the measurement§'div), represented as a series of functions in the
frequency-domain
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The form of the series of functions used to consti@tfw) is well adapted to fit the behavior of complex modu-
lus frequency-dependence for generic viscoelastic nagemvhich present strong frequency-dependence. Nelesthe
modern viscoelastic materials tend to be less frequenpgstient so as to maintain a high loss factor, and conseguentl
being more effective in damping vibrations, over a wide freacy-range of interest. For such materials, a larger numbe
of series must be used to provide a satisfactory curve-fibofpiex modulus frequency-dependence. A more detailed
analysis of curve-fitting will be presented later, but it isrtthiwhile advancing that for modern viscoelastic matsrieded
for vibration damping more than 3 ADF series terms are gdigesmjuired and the larger the number of ADF series terms
considered the better fitting of materials properties isinletd. Notice however that there is one system of equat®)ns (
for each ADF series term considered. Thus, there must be proonise between the quality of material properties curve-
fitting and the number of extra systems of equations incluedthe final augmented system. Since the extra dissipative
dof q¢ included for each ADF series term has the same dimensigntbe dimension of the final augmented system will
be 4 times that of the original FE system (considering 3 ADfesderms to represent frequency-dependence behavior).

It is worthwhile to notice also that in the case of a structpagtially covered with the viscoelastic treatment, the
viscoelastic stiffness matriK, will possess a number of rigid body modes, correspondindneéoRE dof of the non-
treated parts of the structure. Consequently, there wilh Immber of equations in Eq. (3) that will be automatically
satisfied. Hence, the increase in the augmented system sivnemill be also dependent on the percent of area covered
with the viscoelastic material throughout the structundeme.

The rigid body modes dK, can be eliminated through a modal decompositjﬁn: quid such that\g = TgKf,"Td
and Egs. (2) and (3) can be rewritten as

M&+Dd+ (Ke+Ky)a—TaAa Y 8 =F (5)
1
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The equations that are automatically satisfied correspmtitetnull eigenvalues in matriky. Notice that these rigid
body modes oK, do not contribute to the overall structure damping. Hertoe null eigenvalues are eliminated frakg
and so are the corresponding eigenvectors figmNotice also that, in this case, a complete modal deconiposif K,



is required, hence for complex structures one should look &elective decomposition alternative. Combination of.Eq
(5) and (6), leads to the following augmented system

MG+Dg+Kg=F @
with
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3 State space model construction

In order to eliminate the apparent singularity of the masgimaf system (7) and to provide a transformation to an
“elastic only” modal reduced model, Eq. (7) is rewritten istate space form. Therefore, a state vertigrformed by the
augmented vectay and the time-derivative of the mechanical dofs vectom he time-derivatives of the dissipative dofs
g® may not be considered since these variables are massléssedds to

X=AX+p

8
y = Cx ®
where the perturbation vectepris the state distribution of the mechanical lo&dand the output vectoy is, generally,
composed of the measured quantities, written in terms ofthie vectox through the output matriC. The system
dynamics is determined by the square ma#ixThese are
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whereCgandCy are output matrices relative to augmented dofs vegtmd mechanical dofs derivativgsrespectively.

4 Model reduction

Itis evident from Eq. (7) that inclusion of dissipative da&gtly increases the dimension of the FE model, even for a
partial treatment, corresponding to a great increase alfteifinal state space model (Eqg. (8)). Since our final objecti
is to apply the state space model for control design and dagtion, leading to CPU-demanding computations for a
large number of candidate configurations, some model remuist required. Hence, in this section some techniques are
presented to provide a reduced-order state space modeh @imension is small enough to allow application to control
design and optimization and that is still able to well repréghe viscoelastic damping of the structure.

4.1 State space model reduction

In principle, all reduction techniques for state spaceesystmay be applied to Eq. (8). The most standard ones are the
reduction to modal coordinates and the reduction via irstidoalancing methods. While the latter leads to more precise
results for a given input and output configuration, the farimeéndependent of input and output configurations and also
allow faster computations. Details on modal reduction aafolind in (Trindade, Benjeddou and Ohayon, 2001b) and are
briefly repeated here. Details on reduction via internahbeihg methods can be found in (Park, Inman and Lam, 1999).

4.1.1 Complex modal reduction

In what follows a complex-based modal reduction is appliethe state space system (8), neglecting the contributibns o
the viscoelastic relaxation modes and the elastic modaterkto eigenfrequencies out of the frequency-range ceresid
Hence, the eigenvalues matxand, leftT, and rightT,, eigenvectors of Eq. (8) are first evaluated from

AT, =AT,; ATT| = AT, ()]



so thatT[ T, = I, then decomposed as following

JAVER ] 0
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where/\; is the retained elastic eigenvalues matrix dndand T, are its left and right corresponding eigenvectors
matrices, respectively/\ne and Ang correspond to the neglected elastic and relaxation eifiggsarespectively.T e,
Tme, Ting @andT g are their corresponding left and right eigenvectors. Cgusatly, the state vector is approximated as
x =~ Ty X; and, using Egs. (9) and (10), the system (8) may be reduced to

XI’ :ArXr+T|1|:p (11)
y=CTrX

4.1.2 Real representation of reduced model

The main disadvantage of the reduced state space systerns (ttBt its matrices are complex. Fortunately, since all
overdamped (relaxation) modes were neglected, all elenwrthe system (11) are composed of complex conjugates,
such that

Ar =diag(...,Aj,Aj,..) s Thp=col(...,9;,8j,..) ;i CTe =[-- & @ -] (12)

whereA; (j =1,...,r) are the retained elastic eigenvalues gpdheir complex conjugates. To construct a real represen-
tation of the state space system (11), one may use a staséomaationk = TcX,, whereT; is defined as (Friot and Bouc,
1996)

To— | (19

so that the real state space system equivalent to Eq. (11) is
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It is clear that the eigenvalues of the real matkiare exactly the elements 6§. In the form of Eq. (14), the new
state variable& represent the modal displacements and velocities.

4.2 Second order model reduction

The main difficulty in using reduction methods for state spagstems, either via modal truncation or balanced re-
alization, is that the dimension of the state space matrinay be very large due to the inclusion of internal variables
in the FE model. Consequently, when there is a need for rieygetite reduced model evaluation for several treatment
configurations, which is often the case for control desigh @ptimization, it easily becomes an impractical task. Henc
a novel model reduction method is presented in this secdii@onsists in reducing the dissipative system (Eq. (6)pleef
construction of augmented state space system. Since Eg.dB¢ady constructed in terms of a modal decomposition of
the viscoelastic stiffness matrik,, that is, in terms of viscoelastic dissipative modes, onddcoonsider retaining only
a few dissipative modes to reduce the augmented system siiomerObviously, the difficulty would be to guess which
dissipative modes to retain.

Let us suppose that the damped solution for the FE dof may lieemwasq = T<§. Replacing this expression in Eqg.
(6) leads to
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Since the null eigenvalues were eliminated frag) Eq. (16) could also be written as

b — —Qf+ S TITel a7)

Notice from the last equation that tljie-th element of the matriSEgTe represents the contribution of tkeh response
mode to thej-th dissipative mode of the viscoelastic substructuret iyaa measure of how thieth response mode
excites thej-th mode of the viscoelastic substructure. Consequentppasing that the energy of the overall response is
concentrated in certain “response modes”, we might be abtentify the viscoelastic modes which are the most excited
by the response. Alternatively, from Eq. (15), one may reotiat the elements of matrix] T4/\¢ give also a measure of
how each viscoelastic dissipative mode contribute to thestral response. Hence, a technique was tested to sefeet s
viscoelastic dissipative modes based on their contributiche dynamics of the overall structure.

Let us define the matriR as

R=AgTiTe (18)

such that its element®;, represent the weighted residuals between viscoelastipdis/e modél'é and structural mode
TK. Supposing that the majority of structural response enisrgpntained in the firsl, modes inTe, the selection of
the dissipative modes that contribute the most to the stralctesponse may be performed through the sorting of the
following residual vector

rj:||Rjk||,f0rk: 1., Nk (19)

Notice that each element btorrespond to a column @y, that is a viscoelastic dissipative mode. Thus, itis prepos
to eliminate the dissipative modes frofg corresponding to the smallest residuglswhich are thought to be those that
contribute the least to the structural response.

Two main factors determine the performance of the proposddation technique: 1) the basis considered for the
structural responske and 2) the number of dissipative modes kept in the model. Athéobasis considered, let us suppose
as a first approximation that the damped modes are similaetaidamped modes. Then, assuming T{&dT ¢ = | and
T (Ke+K®)Te=Ae, Egs. (15) and (16) can be rewritten as

G+TEDTO+NAA R S G = TIF (20)
I
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Combination of Egs. (20) and (21) leads then to a reducedr@agmented system

Mq+Dg+Kg=F (22)
with
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Notice that the structural model is not reduced using itsanmoed modes ¢, although writing the equations in terms
of § instead ofg has some advantages, such as to provide a diagonal stiuondel, specially if damping matri® is
a proportional damping sudb will be a diagonal matrix. However, the same technique fduoing the dimension of
the dissipative system could still be used with a non-diagjstructural model in Eq. (22). Notice also, from Eq. (22),
that the reduced dissipative coordinafscontain now only those coordinates corresponding to thectsd dissipative
modes according to their residual and, thus, matifit@sndA have a reduced dimension. This reduction can be specially



important since each eliminated dissipative mode leadsaduaction ofn dof in Eq. (22), whera is the number of ADF
series terms considered (generally at least 3).
The state space system matrices and vectors can then btarws

r 9 0 0 |

STiTe —Qil 0 0
A=1 - 0

&TiTe 0 —Qyl 0

. A R" . RT -TIDTe
X = g} yp= {T?F} ; C=[CqTe CqyTe

These, now reduced, state space system matrices can therhee feduced through the state space model reduction
presented previously, possibly saving a large amount ofpeation time. In the next section, the technique presented
here is validated for a cantilever beam with viscoelas@atiment. Also an analysis of the number of dissipative modes
that should be kept in the model is presented.

5 Validation of reduced order models

Let us consider the aluminum cantilever beam partially oedevith a constrained layer treatment as presented in
Fig. 1. The beam is of length 300 mm and thickness 1 mm and i€ méaluminum with Young’s modulus 70 GPa and
mass density 2700 kgfn No viscous damping is considered in this example, th& is 0. The constraining layer is
also made of aluminum and has thickness 0.5 mm and length &v,atmat is the treatment covers 90% of the beam. The
viscoelastic layer has thickness 0.254 mm (10 mil) and isemedd@M ISD112 viscoelastic material, with a mass density
of 1000 kg/n?. The viscoelastic material shear modulus is frequencyedéent. The curve-fitting of ADF parameters to
the measured shear modulus provided by 3M is presented metliesection.

] Constraining laye
\ | Viscoelastic laye

Beam

Figure 1: Cantilever beam partially covered with a passoestrained layer damping treatment.

The FE model is obtained using 35 sandwich beam elementspwidf per node, leading to a total of 105 mechanical
dof (for details on the FE model, please refer to Trindadej@&#dou and Ohayon, 2001a). The FE mesh is presented
in Fig. 2. The beam is also subjected to an impact mecharoced fat 10 mm from the clamped end and its response is
measured at the same point.

Figure 2: Finite element mesh considered for the cantileeam with constrained viscoelastic treatment.

5.1 Curve fitting of viscoelastic material properties

The ADF parameter§g, A; andQ; must be curve-fitted relative to the measurements“dtv). In the present work,
a nonlinear least squares optimization method was usedatoate the ADF parameters. Figure 3 shows the measured
and approximated storage modul@)(and loss factorrf) for 3M ISD112 viscoelastic material at 2D, where

G' (@) = G (@) +G"(w) = G (@)[1+]1(w)] (23)

As shown in Fig. 3, both storage modulus and loss factor ateregresented by five series terms of ADF parame-
ters, whereas three ADF series terms provide only a firstoaqopation (within 15% error margin) for the frequency-
dependence. Nevertheless, these parameters are valithahé/frequency-range considered, that is the frequeange

for which material properties were furnished by 3M. Therefadt is necessary to ensure a reasonable behavior of esti-
mated material properties outside the frequency-rangeesrbitrary external perturbations will generally escitodes
lying on this interval. Required asymptotical properties a

IimOG*(w) =Gg
w—

,  WhereGy, > Gg € R 24
lim G*(w) = G ° (24)
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Figure 3: Frequency-dependence of 3M ISD112 viscoelastierial properties at 2C (solid line) and curve-fit using
three ADF series terms (dashed line) and five ADF series tétashed-dotted line).

Table 1: Curve-fitted ADF parameters for viscoelastic mat&M 1SD112 at 26C.

- - 18.9495 1472.7588
- - 49.7732 9791.3957

ADF with 3 series terms ADF with 5 series terms
i Go(MPa) A Qj(radls) Gp (MPa) A Qi (radls)
1 0.0511 2.8164 31.1176 0.0440 1.3545 12.4547
2 13.1162  446.4542 3.2610 73.8749
3 45.4655 5502.5318 7.7741  387.4302
4
5

Meaning that the shear modulus tends to its static (relaxed)nstantaneous (unrelaxed) values at the boundaries 0 an
oo, respectively. This also imposes thgi0), n () = 0, that is, dissipation only occurs in the transition region

Notice also that these properties are valid for a tempezaitie®C and it is well-known that temperature decrease
will move these master curves to the left and vice-versa.Herother hand, some viscoelastic materials present optimal
loss factor at lower frequencies. So that it is normally fldedo select a material according to frequency-rangeteféast
and operation temperature.

5.2 Comparison of reduced and full order dissipative models

The reduced state space systems, with and without prevéolugtion of the dissipative system, are now compared for
the cantilever beam introduced previously. Five seriansenf ADF parameters were considered in both cases, leading
to an inclusion of 445 dissipative dof (89 def5 ADF series terms) in addition to the 105 mechanical dof ftbenFE
model.

Figures 4 and 5 present the average eigenfrequency and derdaing factor errors, respectively, when using differ-
ent numbers of dissipative modes, corresponding to thesargsiduals, compared to using all but rigid body dissipat
modes. Notice that for the sake of clarity in comparison fitst ten vibration modes were grouped, such that the error
shown forModes 1-3n Fig. 4, for instance, corresponds to the average of thenfigquency errors for eigenmodes 1,

2 and 3. Comparison of Figs. 4 and 5 shows that the eigenfnegezrors are much smaller than that for the damping
factors. This is probably due to the fact that the dissigatiwordinates are solely responsible for the damping in the
structure and neglecting all dissipative modes leads t@tisence of damping. Moreover, although the damping factor
error decreases quite rapidly for modes 4-10, it is stili¢athan 40% for modes 1-3 when using less than 19 dissipative
modes. Nevertheless, when using 30 dissipative modes thpidg errors decrease to 0.0778% (Modes 1-3), 0.1210%
(Modes 4-6) and 0.2259% (Modes 7-10), while the eigenfraquerrors are as low as 0.0033% (Modes 1-3), 0.0101%
(Modes 4-6) and 0.0081% (Modes 7-10). Indeed, from Fig. & cem observe that the ®largest residual is only
0.6% of the first one so that most of the coupling betweenielast dissipative coordinates are provided by the first 30
dissipative modes. Alternatively, one may observe, from Fi, that the cumulative sum of the normalized residuals is
more than 99% for 30 dissipative modes.

Figure 8 shows the frequency response function betweemtpadt force input and displacement output, both colo-
cated at 10 mm from the clamped end, using all but rigid bodgidative modes, as a reference, and reduced-order models
using only 9, 19 and 29 dissipative modes of the 89 availdbis.possible to observe that higher-frequency modes are
better represented by low-order models as previously stiégw&equency and damping errors analyses. It can be seen
that, when using only 9 dissipative modes, the frequengyarese around the first, second and fourth eigenfrequencies
is not correctly represented. However, when including Esigative modes, the difference between the reduced-order
model and the full-dissipative model is almost only peritdptaround the first eigenfrequency. The frequency respons
for the reduced-order model with 29 dissipative modes negtelimost exactly the full-dissipative model.

As it is guessed that the importance of the dissipative doates in the representation of damping may be depen-
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dent on the overall damping level induced in the structurehwyviscoelastic damping treatment, a similar analysis
was performed for a cantilever beam with only 50% of area @evith the viscoelastic treatment. This is done
by changing the length of the viscoelastic and constraitaygrs to 150 mm in Fig. 1, whereas still centered in the
beam surface. This leads to a much less damped structulettsatcthe 10 first modal damping factors &rg0%) =
[5.6,9.2,5.3,5.2,6.7,5.3,4.7,4.7,3.8,2.8]% compared tof (90%) = [5.8,11.2,117,11.8,11.6,10.8,9.4,7.8,6.3,5.1|%

of the previous configuration.

Similarly to the previous case, Figs. 9 and 10 present theageeeigenfrequency and modal damping factor errors,
respectively, when using different numbers of dissipativedes, corresponding to the largest residuals, compared to
using all but rigid body dissipative modes. For this case,dlyenfrequency errors are also much smaller than that for
the damping factors. Here, both the eigenfrequency and ishanfgctor errors decrease more rapidly than in the previous
case. It may be guessed that this is due to the fact that adegsadi structure requires less dissipative coordinatdsebh
in this case, only 18 dissipative modes are required to rethee damping error to less than 1% for all ten first vibration
modes. Indeed, when using 18 dissipative modes, the darepiags are 0.7589% (Modes 1-3), 0.1456% (Modes 4-6)
and 0.2066% (Modes 7-10) and the eigenfrequency errors @468 (Modes 1-3), 0.0087% (Modes 4-6) and 0.0044%
(Modes 7-10). Also, as in the previous case, the cumulative af the normalized residuals is more than 99%.

For the case of 50% coverture, the frequency response @umatas also analyzed, and shown in Fig. 11, using all
but rigid body dissipative modes, as a reference, and redoter models using only 5, 9 and 18 dissipative modes of
the 52 available. For this case, the higher-frequency madeslso better represented by low-order models and when
using a reduced-order model with 18 dissipative modes ggufncy response function matches almost exactly the full-
dissipative model.

Although, for a less damped structure, less dissipativeanatere necessary to represent correctly its viscoelastic
damping, it is worthwhile noticing that, for the structurétwsmaller coverture, there are less dissipative cootdia
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Figure 8: Frequency response function using different renqbf dissipative modes in second order system. —: all but
rigid body modes (89), - -: 9 modes, -.: 19 modes, ——: 29 modes.
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Figure 9: Average eigenfrequency error when using differFigure 10: Average damping factor error when using dif-
ent numbers of dissipative modes in second order systeierent numbers of dissipative modes in second order sys-
compared to using all but rigid body modes. tem compared to using all but rigid body modes.

be reduced. This is due to the fact that there are more rigig¢ dssipative modes, corresponding to the mechanical dof
of the beam uncovered areas. Notice however that in botls daisgossible to reduce the number of viscoelastic modes
to approximately one third of all non-rigid body ones. SiBc&DF series terms were necessary to correctly represent the
frequency-dependence of the viscoelastic material, #thtation represents a gain of 300 dof (reduction from 655alof
355 dof) in the state space system for the 90% coverture &usee the calculation of the eigenvalues of the state space
matrix requires a number of operations approximately etpubl®, where N is the matrix size, this reduction would lead
to a reduction in 84% of computational effort.

6 Conclusions

The present work has presented an alternative reductidmehédr internal variables-based viscoelastic finite eleme
models. A previously developed sandwich/multilayer beamtdielement model combined to the internal variables-
based Anelastic Displacement Fields viscoelastic modslws&d. Through a physical interpretation of the dissipativ
modes, due to the added internal variables, and their aayplith structural vibration modes in the second-order mhode
a technique for the reduction of the extra dissipative cmetteés before transformation to the state space system was
proposed. This method has led to much faster computatiortheoreduction of the state space system at the second
reduction phase. Comparison between the reduced-ordeelraad full-dissipative models for a clamped beam with
passive constrained layer damping treatment has shovefesatiry results. In particular, a reduction of 67% of giasive
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Figure 11: Frequency response function using differentlrensof dissipative modes in second order system. —: all but
rigid body modes (52), - -: 5 modes, -.: 9 modes, ——: 18 modes.

dof has led to errors smaller than 0.5% for damping factoth@toupled structure.
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