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Abstract: Hybrid active-passive damping treatments combine the reliability, low cost and robustness of viscoelastic
damping treatments and the high performance, modal selective and adaptive piezoelectric active control. The main
difficulty when associating such active and passive dampingmechanisms is that active controllers are generally very
sensitive to system changes while viscoelastic materials properties are highly frequency-dependent. In addition, most
modern control techniques require a time-domain model representation. This can be solved through the use of internal
variables viscoelastic models, such as the Anelastic Displacements Fields (ADF) and the Golla-Hughes-McTavish (GHM).
Unfortunately, they increase considerably the order of themodel as they add internal variables to the system to compensate
for frequency dependence. Hence, a model reduction method is normally required. The present work presents alternative
reduction methods for internal variables-based viscoelastic FE models. This is done through a physical interpretation
of the dissipative modes and their coupling with structuralvibration modes in the second-order models. The resulting
reduced-order models are then compared in terms of performance and computational efficiency for passive constrained
layer damping treatments.
Keywords: vibration control, piezoelectric materials, viscoelastic materials, internal variables, model reduction.

1 Introduction

Several studies have shown that combining active and passive control is often a better solution for structural vibration
damping. The main reason stems from the possibility of combining the reliable, low cost and robust passive damping
and the high performance, modal selective and adaptive active control. One of the most promising active-passive damp-
ing mechanisms is obtained by including piezoelectric actuators in the standard viscoelastic constrained layer damping
treatments. These active-passive treatments may be optimized by varying the relative positions of viscoelastic layers and
piezoelectric actuators (Trindade and Benjeddou, 2002). The main difficulty when associating such active and passive
damping mechanisms is that active controllers are generally very sensitive to system changes while viscoelastic materials
properties are highly frequency-dependent. In addition, most modern control techniques require a time-domain model rep-
resentation. Therefore, methods such as the Anelastic Displacements Fields (ADF) proposed by Lesieutre and Bianchini
(1995) and Golla-Hughes-McTavish (GHM) proposed by Golla and Hughes (1985) and McTavish and Hughes (1993)
have been applied to this active-passive treatments, sincethey are able to model the frequency dependence of stiffnessand
damping properties of viscoelastically damped structuresin the time-domain (Trindade, Benjeddou and Ohayon, 2000).It
was shown that both ADF and GHM are effective for time-domainanalyses of highly damped structures. Unfortunately,
they increase considerably the order of the model as they addinternal variables to the system to compensate for frequency
dependence. Hence, a model reduction method is normally required.

There are mainly three strategies published in the literature for the reduction of viscoelastic finite element (FE) models
with internal variables. The first one consists in applying some reduction method to the undamped structural FE model
before adding the internal variables, which has the advantage of handling smaller matrices but generally leads to erro-
neous or less precise estimations of viscoelastic damping.Friswell and Inman (1999) considered reducing the order of
the physical FE model, through a system equivalent reduction expansion process (SEREP), before and after assembly,
previous to introducing the extra dissipation coordinatesfor the GHM method. The second reduction strategy consists in
applying a reduction method to the second order augmented FEmodel, after inclusion of internal variables. Park, Inman
and Lam (1999) have studied Guyan reduction method to reducethe order of a FE model augmented by GHM viscoelastic
dissipation coordinates, but they show that the method perform poorly. The third strategy is based on the application ofa
reduction method to the augmented state space system, that is after inclusion of the internal variables and transformation
to the state space form. This has the advantage of allowing the application of modern reduction methods, developed for
state space systems, such as internal balancing method. Park, Inman and Lam (1999) and Friswell and Inman (1999)
applied an internal balancing method to a state space systemaugmented by GHM dissipation coordinates. Friswell and
Inman (1999) also applied eigensystem truncation for comparison.

The present work presents an alternative reduction method for internal variables-based viscoelastic FE models. This
is done through a physical interpretation of the dissipative modes and their coupling with structural vibration modes in the
second-order model. The objective is to allow a reduction ofthe extra dissipative coordinates before transformation to the
state space system, so as to provide faster computations on the reduction of the state space system as a second reduction
phase. The resulting reduced-order model is then compared in terms of performance and computational efficiency with
full-order models for passive constrained layer damping treatments.



2 Finite element model

In a previous work (Trindade, Benjeddou and Ohayon, 2001a),a finite element model able to deal with sandwich
beams with viscoelastic core and multilayer faces was presented. The laminated faces were supposed to behave as
Bernoulli-Euler beams while Timoshenko hypothesis was retained for the core, to allow shear strains to occur in the vis-
coelastic material layer. Three-dimensional constitutive matrices are considered for each material and then transformed
according to the layer orientation in thexy plane. The transformed three-dimensional constitutive matrices are finally
reduced using thexy plane-stress assumption. Consequently, composite material orientation is properly accounted for in
the FE model. The assembled equations of motion may be written as (Trindade, Benjeddou and Ohayon, 2001a)

Mq̈+Dq̇+[Ke+Kv]q = F (1)

whereq is the dofs vector, composed by the nodal axial mean and relative displacements, deflections and bending rota-
tions. q̇ andq̈ are respectively the velocity and acceleration vectors.M is the mass matrix,D is a viscous damping matrix
introduceda posterioriandF is a mechanical perturbation input.K v is the part of the stiffness matrix corresponding to
the contribution of the viscoelastic material, which is frequency-dependent, andKe is the stiffness matrix corresponding
to the remaining contributions in the structure.

The frequency-dependence of the viscoelastic material is modeled through the Lesieutre’s ADF model (Lesieutre
and Bianchini, 1995). The ADF model is based on a separation of the viscoelastic material strains in an elastic part,
instantaneously proportional to the stress, and an anelastic part, representing material relaxation. This could be applied to
Eq. (1) by replacing the dof vectorq by qe = q−∑i q

d
i in the viscoelastic strain energy.qe andqd

i represent the dof vectors
associated with the elastic and anelastic strains, respectively. Adding a system of equations describing the time-domain
evolution of the dissipative dofqd

i to Eq. (1), we get

Mq̈+Dq̇+(Ke+K∞
v )q−K∞

v ∑
i

qd
i = F (2)

Ci

Ωi
K∞

v q̇d
i +CiK∞

v qd
i −K∞

v q = 0 (3)

whereK∞
v = G∞K̄v, for G∞ = G0(1+ ∑i ∆i) andCi = (1+ ∑i ∆i)/∆i (Lesieutre and Bianchini, 1995). ADF parameters

G0, ∆i andΩi are evaluated by curve-fitting of the measurements ofG∗(ω), represented as a series of functions in the
frequency-domain

G∗(ω) = G0 +G0∑
i

∆i
ω2 + jω Ωi

ω2 +Ω2
i

(4)

The form of the series of functions used to constructG∗(ω) is well adapted to fit the behavior of complex modu-
lus frequency-dependence for generic viscoelastic materials, which present strong frequency-dependence. Nevertheless,
modern viscoelastic materials tend to be less frequency-dependent so as to maintain a high loss factor, and consequently
being more effective in damping vibrations, over a wide frequency-range of interest. For such materials, a larger number
of series must be used to provide a satisfactory curve-fit of complex modulus frequency-dependence. A more detailed
analysis of curve-fitting will be presented later, but it is worthwhile advancing that for modern viscoelastic materials used
for vibration damping more than 3 ADF series terms are generally required and the larger the number of ADF series terms
considered the better fitting of materials properties is obtained. Notice however that there is one system of equations (3)
for each ADF series term considered. Thus, there must be a compromise between the quality of material properties curve-
fitting and the number of extra systems of equations includedinto the final augmented system. Since the extra dissipative
dof qd

i included for each ADF series term has the same dimension ofq, the dimension of the final augmented system will
be 4 times that of the original FE system (considering 3 ADF series terms to represent frequency-dependence behavior).

It is worthwhile to notice also that in the case of a structurepartially covered with the viscoelastic treatment, the
viscoelastic stiffness matrixKv will possess a number of rigid body modes, corresponding to the FE dof of the non-
treated parts of the structure. Consequently, there will bea number of equations in Eq. (3) that will be automatically
satisfied. Hence, the increase in the augmented system dimension will be also dependent on the percent of area covered
with the viscoelastic material throughout the structure surface.

The rigid body modes ofK v can be eliminated through a modal decompositionqd
i = Tdq̂d

i such thatΛd = TT
d K∞

v Td
and Eqs. (2) and (3) can be rewritten as

Mq̈+Dq̇+(Ke+K∞
v )q−TdΛd ∑

i
q̂d

i = F (5)

Ci

Ωi
Λd

˙̂qd
i +CiΛdq̂d

i −ΛdTT
d q = 0 (6)

The equations that are automatically satisfied correspond to the null eigenvalues in matrixΛd. Notice that these rigid
body modes ofKv do not contribute to the overall structure damping. Hence, the null eigenvalues are eliminated fromΛd
and so are the corresponding eigenvectors fromTd. Notice also that, in this case, a complete modal decomposition of K v



is required, hence for complex structures one should look for a selective decomposition alternative. Combination of Eqs.
(5) and (6), leads to the following augmented system

M̄ ¨̄q+ D̄ ˙̄q+ K̄ q̄ = F̄ (7)

with

M̄ =

[

M 0
0 0

]

; D̄ =

[

D 0
0 Ddd

]

; F̄ =

{

F
0

}

K̄ =

[

Ke+K∞
v Ked

KT
ed Kdd

]

; q̄ = col
(

q, q̂d
1, . . . , q̂d

n

)

where,

Ddd = diag

(

C1

Ω1
Λd · · ·

Cn

Ωn
Λd

)

; Kdd = diag(C1Λd · · · CnΛd) ; Ked = [−TdΛd · · · −TdΛd]

3 State space model construction

In order to eliminate the apparent singularity of the mass matrix of system (7) and to provide a transformation to an
“elastic only” modal reduced model, Eq. (7) is rewritten in astate space form. Therefore, a state vectorx is formed by the
augmented vector̄q and the time-derivative of the mechanical dofs vectorq̇. The time-derivatives of the dissipative dofs
qd

i may not be considered since these variables are massless. This leads to

ẋ = Ax +p
y = Cx

(8)

where the perturbation vectorp is the state distribution of the mechanical loadsF and the output vectory is, generally,
composed of the measured quantities, written in terms of thestate vectorx through the output matrixC. The system
dynamics is determined by the square matrixA. These are

A =
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x =

[

q̄
q̇

]

; p =

[

0
M−1F

]

; C = [Cq̄ Cq̇]

whereCq̄ andCq̇ are output matrices relative to augmented dofs vectorq̄ and mechanical dofs derivativesq̇, respectively.

4 Model reduction

It is evident from Eq. (7) that inclusion of dissipative dof greatly increases the dimension of the FE model, even for a
partial treatment, corresponding to a great increase also in the final state space model (Eq. (8)). Since our final objective
is to apply the state space model for control design and optimization, leading to CPU-demanding computations for a
large number of candidate configurations, some model reduction is required. Hence, in this section some techniques are
presented to provide a reduced-order state space model, which dimension is small enough to allow application to control
design and optimization and that is still able to well represent the viscoelastic damping of the structure.

4.1 State space model reduction

In principle, all reduction techniques for state space systems may be applied to Eq. (8). The most standard ones are the
reduction to modal coordinates and the reduction via internal balancing methods. While the latter leads to more precise
results for a given input and output configuration, the former is independent of input and output configurations and also
allow faster computations. Details on modal reduction can be found in (Trindade, Benjeddou and Ohayon, 2001b) and are
briefly repeated here. Details on reduction via internal balancing methods can be found in (Park, Inman and Lam, 1999).

4.1.1 Complex modal reduction

In what follows a complex-based modal reduction is applied to the state space system (8), neglecting the contributions of
the viscoelastic relaxation modes and the elastic modes related to eigenfrequencies out of the frequency-range considered.
Hence, the eigenvalues matrixΛ and, leftT l and rightTr , eigenvectors of Eq. (8) are first evaluated from

AT r = ΛTr ; ATT l = ΛT l (9)



so thatTT
l Tr = I , then decomposed as following

Λ =

[Λr 0 0
0 Λne 0
0 0 Λnd

]

; T l = [T lr T lne T lnd] ; Tr = [Trr Trne Trnd] (10)

whereΛr is the retained elastic eigenvalues matrix andT lr and Trr are its left and right corresponding eigenvectors
matrices, respectively.Λne andΛnd correspond to the neglected elastic and relaxation eigenvalues, respectively.T lne,
Trne, T lnd andTrnd are their corresponding left and right eigenvectors. Consequently, the state vector is approximated as
x ≈ Trr xr and, using Eqs. (9) and (10), the system (8) may be reduced to

ẋr = Λrxr +TT
lr p

y = CTrr xr
(11)

4.1.2 Real representation of reduced model

The main disadvantage of the reduced state space system (11)is that its matrices are complex. Fortunately, since all
overdamped (relaxation) modes were neglected, all elements of the system (11) are composed of complex conjugates,
such that

Λr = diag(. . . ,λ j , λ̄ j , . . .) ; TT
lr p = col(. . . ,ϕ j , ϕ̄ j , . . .) ; CTrr =

[

· · · φ j φ̄ j · · ·
]

(12)

whereλ j ( j = 1, . . . , r) are the retained elastic eigenvalues andλ̄ j their complex conjugates. To construct a real represen-
tation of the state space system (11), one may use a state transformationx̂ = Tcxr , whereTc is defined as (Friot and Bouc,
1996)
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(13)

so that the real state space system equivalent to Eq. (11) is

˙̂x = Âx̂+ p̂

y = Ĉx̂
(14)

where

Â = TcΛrT−1
c =
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p̂ = TcTT
lr p ; Ĉ = CTrr T−1

c

It is clear that the eigenvalues of the real matrixÂ are exactly the elements ofΛr . In the form of Eq. (14), the new
state variableŝx represent the modal displacements and velocities.

4.2 Second order model reduction

The main difficulty in using reduction methods for state space systems, either via modal truncation or balanced re-
alization, is that the dimension of the state space matrixA may be very large due to the inclusion of internal variables
in the FE model. Consequently, when there is a need for repeating the reduced model evaluation for several treatment
configurations, which is often the case for control design and optimization, it easily becomes an impractical task. Hence,
a novel model reduction method is presented in this section.It consists in reducing the dissipative system (Eq. (6)) before
construction of augmented state space system. Since Eq. (6)is already constructed in terms of a modal decomposition of
the viscoelastic stiffness matrixKv, that is, in terms of viscoelastic dissipative modes, one could consider retaining only
a few dissipative modes to reduce the augmented system dimension. Obviously, the difficulty would be to guess which
dissipative modes to retain.

Let us suppose that the damped solution for the FE dof may be written asq = Teq̂. Replacing this expression in Eq.
(6) leads to



TT
e MT e ¨̂q+TT

e DTe ˙̂q+TT
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Since the null eigenvalues were eliminated fromΛd, Eq. (16) could also be written as

˙̂qd
i = −Ωi q̂d

i +
Ωi

Ci
TT

d Teq̂ (17)

Notice from the last equation that thejk-th element of the matrixTT
d Te represents the contribution of thek-th response

mode to thej-th dissipative mode of the viscoelastic substructure, that is, a measure of how thek-th response mode
excites thej-th mode of the viscoelastic substructure. Consequently, supposing that the energy of the overall response is
concentrated in certain “response modes”, we might be able to identify the viscoelastic modes which are the most excited
by the response. Alternatively, from Eq. (15), one may notice that the elements of matrixTT

e TdΛd give also a measure of
how each viscoelastic dissipative mode contribute to the structural response. Hence, a technique was tested to select some
viscoelastic dissipative modes based on their contribution to the dynamics of the overall structure.

Let us define the matrixR as

R = ΛdTT
d Te (18)

such that its elementsRjk represent the weighted residuals between viscoelastic dissipative modeT j
d and structural mode

Tk
e. Supposing that the majority of structural response energyis contained in the firstNk modes inTe, the selection of

the dissipative modes that contribute the most to the structural response may be performed through the sorting of the
following residual vectorr

r j = ||Rjk||, for k = 1, ...,Nk (19)

Notice that each element ofr correspond to a column ofTd, that is a viscoelastic dissipative mode. Thus, it is proposed
to eliminate the dissipative modes fromTd corresponding to the smallest residualsr j , which are thought to be those that
contribute the least to the structural response.

Two main factors determine the performance of the proposed reduction technique: 1) the basis considered for the
structural responseTe and 2) the number of dissipative modes kept in the model. As for the basis considered, let us suppose
as a first approximation that the damped modes are similar to the undamped modes. Then, assuming thatTT

e MT e = I and
TT

e (Ke+K∞
v )Te = Λe, Eqs. (15) and (16) can be rewritten as

¨̂q+TT
e DTe ˙̂q+Λeq̂− R̄T ∑

i
q̂d

i = TT
e F (20)

Ci

Ωi
Λ̄d

˙̂qd
i +CiΛ̄dq̂d

i − R̄q̂ = 0 (21)

Combination of Eqs. (20) and (21) leads then to a reduced-order augmented system

M̄ ¨̄q+ D̄ ˙̄q+ K̄ q̄ = F̄ (22)

with

M̄ =

[

I 0
0 0

]

; D̄ =

[

TT
e DTe 0

0 Ddd

]

; F̄ =

{

TT
e F
0

}

K̄ =

[

Λe Ked
KT

ed Kdd

]

; q̄ = col
(

q̂, q̂d
1, . . . , q̂d

n

)

where,

Ddd = diag

(

C1

Ω1
Λ̄d · · ·

Cn

Ωn
Λ̄d

)

; Kdd = diag
(

C1Λ̄d · · · CnΛ̄d
)

; Ked =
[

−R̄T · · · − R̄T]

Notice that the structural model is not reduced using its undamped modesTe, although writing the equations in terms
of q̂ instead ofq has some advantages, such as to provide a diagonal structural model, specially if damping matrixD is
a proportional damping such̄D will be a diagonal matrix. However, the same technique for reducing the dimension of
the dissipative system could still be used with a non-diagonal structural model in Eq. (22). Notice also, from Eq. (22),
that the reduced dissipative coordinatesq̂d

i contain now only those coordinates corresponding to the selected dissipative
modes according to their residual and, thus, matricesR̄ andΛ̄ have a reduced dimension. This reduction can be specially



important since each eliminated dissipative mode leads to areduction ofn dof in Eq. (22), wheren is the number of ADF
series terms considered (generally at least 3).

The state space system matrices and vectors can then be rewritten as

A =
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Ω1
C1

T̄T
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x =

[

q̄
˙̂q

]

; p =

[

0
TT

e F

]

; C = [Cq̄Te Cq̇Te]

These, now reduced, state space system matrices can then be further reduced through the state space model reduction
presented previously, possibly saving a large amount of computation time. In the next section, the technique presented
here is validated for a cantilever beam with viscoelastic treatment. Also an analysis of the number of dissipative modes
that should be kept in the model is presented.

5 Validation of reduced order models

Let us consider the aluminum cantilever beam partially covered with a constrained layer treatment as presented in
Fig. 1. The beam is of length 300 mm and thickness 1 mm and is made of aluminum with Young’s modulus 70 GPa and
mass density 2700 kg/m3. No viscous damping is considered in this example, that isD = 0. The constraining layer is
also made of aluminum and has thickness 0.5 mm and length 270 mm, that is the treatment covers 90% of the beam. The
viscoelastic layer has thickness 0.254 mm (10 mil) and is made of 3M ISD112 viscoelastic material, with a mass density
of 1000 kg/m3. The viscoelastic material shear modulus is frequency-dependent. The curve-fitting of ADF parameters to
the measured shear modulus provided by 3M is presented in thenext section.

Beam

Constraining layer
Viscoelastic layer

Figure 1: Cantilever beam partially covered with a passive constrained layer damping treatment.

The FE model is obtained using 35 sandwich beam elements, with 6 dof per node, leading to a total of 105 mechanical
dof (for details on the FE model, please refer to Trindade, Benjeddou and Ohayon, 2001a). The FE mesh is presented
in Fig. 2. The beam is also subjected to an impact mechanical force at 10 mm from the clamped end and its response is
measured at the same point.

Figure 2: Finite element mesh considered for the cantileverbeam with constrained viscoelastic treatment.

5.1 Curve fitting of viscoelastic material properties

The ADF parametersG0, ∆i andΩi must be curve-fitted relative to the measurements ofG∗(ω). In the present work,
a nonlinear least squares optimization method was used to evaluate the ADF parameters. Figure 3 shows the measured
and approximated storage modulus (G′) and loss factor (η) for 3M ISD112 viscoelastic material at 20oC, where

G∗(ω) = G′(ω)+ jG′′(ω) = G′(ω)[1+ jη(ω)] (23)

As shown in Fig. 3, both storage modulus and loss factor are well represented by five series terms of ADF parame-
ters, whereas three ADF series terms provide only a first approximation (within 15% error margin) for the frequency-
dependence. Nevertheless, these parameters are valid onlyin the frequency-range considered, that is the frequency-range
for which material properties were furnished by 3M. Therefore, it is necessary to ensure a reasonable behavior of esti-
mated material properties outside the frequency-range, since arbitrary external perturbations will generally excite modes
lying on this interval. Required asymptotical properties are







lim
ω→0

G∗(ω) = G0

lim
ω→∞

G∗(ω) = G∞
, whereG∞ > G0 ∈ R

+ (24)
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Figure 3: Frequency-dependence of 3M ISD112 viscoelastic material properties at 20oC (solid line) and curve-fit using
three ADF series terms (dashed line) and five ADF series terms(dashed-dotted line).

Table 1: Curve-fitted ADF parameters for viscoelastic material 3M ISD112 at 20oC.
ADF with 3 series terms ADF with 5 series terms

i G0 (MPa) ∆i Ωi (rad/s) G0 (MPa) ∆i Ωi (rad/s)
1 0.0511 2.8164 31.1176 0.0440 1.3545 12.4547
2 13.1162 446.4542 3.2610 73.8749
3 45.4655 5502.5318 7.7741 387.4302
4 – – 18.9495 1472.7588
5 – – 49.7732 9791.3957

Meaning that the shear modulus tends to its static (relaxed)and instantaneous (unrelaxed) values at the boundaries 0 and
∞, respectively. This also imposes thatη(0),η(∞) = 0, that is, dissipation only occurs in the transition region.

Notice also that these properties are valid for a temperature of 20oC and it is well-known that temperature decrease
will move these master curves to the left and vice-versa. On the other hand, some viscoelastic materials present optimal
loss factor at lower frequencies. So that it is normally possible to select a material according to frequency-range of interest
and operation temperature.

5.2 Comparison of reduced and full order dissipative models

The reduced state space systems, with and without previous reduction of the dissipative system, are now compared for
the cantilever beam introduced previously. Five series terms of ADF parameters were considered in both cases, leading
to an inclusion of 445 dissipative dof (89 dof× 5 ADF series terms) in addition to the 105 mechanical dof fromthe FE
model.

Figures 4 and 5 present the average eigenfrequency and modaldamping factor errors, respectively, when using differ-
ent numbers of dissipative modes, corresponding to the largest residuals, compared to using all but rigid body dissipative
modes. Notice that for the sake of clarity in comparison, thefirst ten vibration modes were grouped, such that the error
shown forModes 1-3in Fig. 4, for instance, corresponds to the average of the eigenfrequency errors for eigenmodes 1,
2 and 3. Comparison of Figs. 4 and 5 shows that the eigenfrequency errors are much smaller than that for the damping
factors. This is probably due to the fact that the dissipative coordinates are solely responsible for the damping in the
structure and neglecting all dissipative modes leads to theabsence of damping. Moreover, although the damping factor
error decreases quite rapidly for modes 4-10, it is still larger than 40% for modes 1-3 when using less than 19 dissipative
modes. Nevertheless, when using 30 dissipative modes the damping errors decrease to 0.0778% (Modes 1-3), 0.1210%
(Modes 4-6) and 0.2259% (Modes 7-10), while the eigenfrequency errors are as low as 0.0033% (Modes 1-3), 0.0101%
(Modes 4-6) and 0.0081% (Modes 7-10). Indeed, from Fig. 6, one can observe that the 31th largest residual is only
0.6% of the first one so that most of the coupling between elastic and dissipative coordinates are provided by the first 30
dissipative modes. Alternatively, one may observe, from Fig. 7, that the cumulative sum of the normalized residuals is
more than 99% for 30 dissipative modes.

Figure 8 shows the frequency response function between the impact force input and displacement output, both colo-
cated at 10 mm from the clamped end, using all but rigid body dissipative modes, as a reference, and reduced-order models
using only 9, 19 and 29 dissipative modes of the 89 available.It is possible to observe that higher-frequency modes are
better represented by low-order models as previously showed in frequency and damping errors analyses. It can be seen
that, when using only 9 dissipative modes, the frequency response around the first, second and fourth eigenfrequencies
is not correctly represented. However, when including 19 dissipative modes, the difference between the reduced-order
model and the full-dissipative model is almost only perceptible around the first eigenfrequency. The frequency response
for the reduced-order model with 29 dissipative modes matches almost exactly the full-dissipative model.

As it is guessed that the importance of the dissipative coordinates in the representation of damping may be depen-
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Figure 4: Average eigenfrequency error when using differ-
ent numbers of dissipative modes in second order system
compared to using all but rigid body modes.
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Figure 5: Average damping factor error when using differ-
ent numbers of dissipative modes in second order system
compared to using all but rigid body modes.
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Figure 6: Normalized residual for each viscoelastic dissi-
pative mode.
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Figure 7: Cumulative sum of residuals for the dissipative
modes.

dent on the overall damping level induced in the structure bythe viscoelastic damping treatment, a similar analysis
was performed for a cantilever beam with only 50% of area covered with the viscoelastic treatment. This is done
by changing the length of the viscoelastic and constraininglayers to 150 mm in Fig. 1, whereas still centered in the
beam surface. This leads to a much less damped structure, such that the 10 first modal damping factors areζ (50%) =
[5.6,9.2,5.3,5.2,6.7,5.3,4.7,4.7,3.8,2.8]% compared toζ (90%) = [5.8,11.2,11.7,11.8,11.6,10.8,9.4,7.8,6.3,5.1]%
of the previous configuration.

Similarly to the previous case, Figs. 9 and 10 present the average eigenfrequency and modal damping factor errors,
respectively, when using different numbers of dissipativemodes, corresponding to the largest residuals, compared to
using all but rigid body dissipative modes. For this case, the eigenfrequency errors are also much smaller than that for
the damping factors. Here, both the eigenfrequency and damping factor errors decrease more rapidly than in the previous
case. It may be guessed that this is due to the fact that a less damped structure requires less dissipative coordinates. Indeed,
in this case, only 18 dissipative modes are required to reduce the damping error to less than 1% for all ten first vibration
modes. Indeed, when using 18 dissipative modes, the dampingerrors are 0.7589% (Modes 1-3), 0.1456% (Modes 4-6)
and 0.2066% (Modes 7-10) and the eigenfrequency errors are 0.0458% (Modes 1-3), 0.0087% (Modes 4-6) and 0.0044%
(Modes 7-10). Also, as in the previous case, the cumulative sum of the normalized residuals is more than 99%.

For the case of 50% coverture, the frequency response function was also analyzed, and shown in Fig. 11, using all
but rigid body dissipative modes, as a reference, and reduced-order models using only 5, 9 and 18 dissipative modes of
the 52 available. For this case, the higher-frequency modesare also better represented by low-order models and when
using a reduced-order model with 18 dissipative modes the frequency response function matches almost exactly the full-
dissipative model.

Although, for a less damped structure, less dissipative modes were necessary to represent correctly its viscoelastic
damping, it is worthwhile noticing that, for the structure with smaller coverture, there are less dissipative coordinates to
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Figure 8: Frequency response function using different numbers of dissipative modes in second order system. –: all but
rigid body modes (89), - -: 9 modes, -.: 19 modes, – –: 29 modes.
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Figure 9: Average eigenfrequency error when using differ-
ent numbers of dissipative modes in second order system
compared to using all but rigid body modes.
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Figure 10: Average damping factor error when using dif-
ferent numbers of dissipative modes in second order sys-
tem compared to using all but rigid body modes.

be reduced. This is due to the fact that there are more rigid body dissipative modes, corresponding to the mechanical dof
of the beam uncovered areas. Notice however that in both cases it is possible to reduce the number of viscoelastic modes
to approximately one third of all non-rigid body ones. Since5 ADF series terms were necessary to correctly represent the
frequency-dependence of the viscoelastic material, that reduction represents a gain of 300 dof (reduction from 655 dofto
355 dof) in the state space system for the 90% coverture case.Since the calculation of the eigenvalues of the state space
matrix requires a number of operations approximately equalto N3, where N is the matrix size, this reduction would lead
to a reduction in 84% of computational effort.

6 Conclusions

The present work has presented an alternative reduction method for internal variables-based viscoelastic finite element
models. A previously developed sandwich/multilayer beam finite element model combined to the internal variables-
based Anelastic Displacement Fields viscoelastic model was used. Through a physical interpretation of the dissipative
modes, due to the added internal variables, and their coupling with structural vibration modes in the second-order model,
a technique for the reduction of the extra dissipative coordinates before transformation to the state space system was
proposed. This method has led to much faster computations onthe reduction of the state space system at the second
reduction phase. Comparison between the reduced-order model and full-dissipative models for a clamped beam with
passive constrained layer damping treatment has shown satisfactory results. In particular, a reduction of 67% of dissipative
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Figure 11: Frequency response function using different numbers of dissipative modes in second order system. –: all but
rigid body modes (52), - -: 5 modes, -.: 9 modes, – –: 18 modes.

dof has led to errors smaller than 0.5% for damping factors ofthe coupled structure.
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