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Abstract. The vibration of Mindlin plateswith moving concentrated |oad isinvestigated using the finite element method
(FEM). The use of Mindlin elements may, depending on the refinement of the mesh, yield poor resultsif the loads are
located at off-nodal positions. A new strategy that is based on an adaptive mesh scheme and on the use of perturbation
technique in the structural vibration simulation is proposed in this paper to overcome this problem. The strategy
supports the use of the traditional finite elements, arbitrary geometry and boundary conditions for both plates and
shells.
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1. Introduction

Traversing loads are present in several structuralmgsteuch as bridges, cable railways, railroads, highways
cranes and machining tools (Fryba, 1972; Gbadeyan and Oni, 19%jegan and Oni, 1995; Huang and
Thambiratnam, 2002; Hinet al., 1984). Hence, simulation of moving loads is an impoantedure in the design of
these systems. However, the investigation of moving Ibadseen limited to scenarios where beam modelsoigravi
reasonable approximation to the system response @tliab, 1984, Michaltsos, Sophianopoulos and Kounadis, 1996;
Oguamanam, Hansen and Heppler, 1998; Pesterev and Bergman, 46i84; &d Leipholz, 1987; StanisSi1985;
Stokes, 1849) or to scenarios with simple geometries anddapuconditions such as simply supported rectangular
plates (Gbadeyan and Oni, 1992; Gbadeyan and Oni, 1995gHumh Thambiratnam, 2002; Shadnam, Modif and
Akin, 2001). Olsson (1985) presents a general derivation EEEM application to moving load problems but only
reports simulations for beam models.

The few studies addressing plate models work directly thighgoverning dynamic equations, solving them by an
appropriate numerical procedure (e.g. Runge-Kutta) or recuniaghemes that involve separation of variables asch
the finite strip method. Regardless of the scheme ahasal functions that satisfy very specific boundeonditions
must be obtained. However, as soon as the system gedmebtmes moderately complex or the boundary conditions
diverse, the difficulty in finding such trial functions bewes evident. Moreover, formulations that adopt the icialss
Kirchoff plate assumptions (zero transverse shearpfea used in FEM based studies of plates under moving loads.
This is in sharp contrast with current practice iplio FEM where the use of finite elements that condidersverse
shear (Mindlin elements) is prevalent.

This paper is concerned with the appropriateness of IMirtgpe elements in modeling plates traversed by
concentrated loads. Validation tests show that tleeracy of the results obtained by the FEM when condewdltra
forces are applied off-nodal positions is poor. Dependingn@emtesh refinement and boundary conditions imposed the
degree of accuracy can be so degenerated that the resettasmof transverse displacements are simply wrong.

Since the concentrated traversing load occupies diffgresitions during the simulation, it is expected that off
nodal loadings will occur. Hence, the lack of accuracscdbed above will propagate to the dynamic simulations
specially because it is highly desirable to use meshegmple as possible not to burden the computer procedunes.
adaptive mesh scheme is employed so as to ensure tltanttentrated loads (forces or masses) are always @daplie
the nodal locations of the elements. Thus the domagtiseshed at every time-step in order to adjust tootdmt path.
The perturbation technique follows from the observatia while traversing concentrated forces yield conghotal
matrices those obtained for traversing concentratedemasgnarios are nonconstant because of inertiatsefidwus,
modified governing dynamic equations are required and thegolred via the perturbation technique.



2. Problem for mulation and gover ning equations

A schematic of the problem is depicted in Fig. 1. A poirdtssm moves across the surface of a plate with a
prescribed position profile, y.), velocityv,, and acceleration,,. The thickness of the plate is denoted by the symbol
h. The plate is assumed to have arbitrary geometrypanddary conditions.
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Figure 1. Schematic of a plate with traversing conegedrload

Following the Mindlin plate theory, the in-plane disglaent fieldsi and v, in thex- andy-axes respectively, are
assumed linear in the plate thickness while the trasswdisplacemeniv is constant through the plate thickness. Thus,

L_](X, yl th) = U(X, yl t) + Zl//X(X, yl t)
V(X y,zt) =v(x, y,t) + z¢p (X, Y, t) . (1)
w(x, Y, z,t) =w(Xx, y,t)

The linear strain vectors are derived from kinematetians (1) and they may be written as
u
X wx,x 0 VV,X + ‘//x
g= vy + Z wy,y —g + 7z vy = Wy+[//y . 2
u,y+V,x ‘//x,y""//y,x ’

Given the above strain-displacement relations, thane material stiffness matr@@ (in-plane) and the transverse
shear stiffnes®s, the strain energy due to the plate elasticity magxpeessed as

£LI[A B 07/&°
Up=% kB D 0 Kk dQ, (3)
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where
hi2 hi2
(A,B,D) = J(lz,zz)de and Ag= JQSdz.
-h/2 -h/2

If a gravitational fieldy is aligned with the plateaxis, the moving mass potential eneWtjy and the plate potential
energyW, may be written as

W, =mgw and W,,=IphgwdQ. 4)
Q

The kinetic energy of the plate is given by



T =1jph u2+v2+w2+ﬁ(w§+w2)d9. (5)
P2 ) 12 Y
To derive the kinetic energy of the traversing masgasition vector is given as
h h
r= X+U+§l//x Uy + y+V+§wy Uy+WUZ, (6)

whereuy, uy, U, are the unit vectors of thgz reference system. The moving mass kinetic enengyesexpressed as
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Tm:md_rﬂzm dL dV + d_W +2X di+2ydl+x +y (7)
2dt d 2| dt dt dt dt dt

whereu =u+h ¢/ 2andv =v+h ¢, | 2. The time derivatives in Eq. (7) are the totaliwdeives because of
convective terms that arise due to the mass movemeatfirst and second total derivatives are evaluated thvéthaid
of the following:

df _of  oxaf  dyof
+ o+ L

— = =f+xf_+\y
dt ot ot ox ot dy x Ay @®
%-f+2xf +2yf +Xf +yfy+xf yy 2%
wheref is a dummy function of, y andt.
The first variation ofl,, in Eq. (7) is taken and, integration in time yields, dftergration by parts,
% d?w
ja‘rmdt= J‘rr{ = dt2 T - A+ XA YN ot . 9)

The problem domain is now discretized. The vector arjlation functions is denoted by the symNohndde
denotes the vector of elemental nodal variables sutlyga{q] d, qy dj, qu }T. The following definitions are

also made:

=[o 0 0 N Of.=N,a.
u=[N 0 0 0 0g.=N,d, w,=[0 0 0 0 Ng.=N, a.
=0 N 0 0 0jg.=N,q, ’
=[o o N 0 Ofg.=N,q.

* . (10)
u"=[N 0 0 hN/2 Og.=N_q,

vi=[o N 0 0 hN/2Jq.=Nq,

Substitution of terms, v, w, ¢ andyj, of Eq. (10) in Egs. (3)-(5) yields the usual element mesrassociated with
Mindlin elements with a concentrated static mass. ifilegtia, damping and stiffness matrices and the loadbnrgect
which result because of the traversing mass are deducgebbijtution for the terms andv' of Eq. (10) into Eq. (9).
These matrices may be written respectively as

M =m(NT*N < +NLN +NJN )
C _2m(xNT . FYNLN )+ 2m(xNT S FINLN )+ 2m{*NTN,,  + yNIVNW’y)
= mleNT T T TN oy T
Kme= m(xN N vt xNu* Nu*’y + X Nu* Nu*’xx +y Nu* oy +2xyNu* Nu*’xy)+ 1)
(xNT ot VNI*NV* +3°NLNG. O+ y2NT N+ 25NN )+
Y v VXX v Vo,yy v Vo, Xy
m(XNWNW,X + yN;/rva,y + XZN;IFVNW,XX + yzN-\Eva,yy + ZXyN;/rva,xy)
fire = —m(XN} +yNT. )



The above element matrices are assembled to obtaisy#tem governing dynamic equation which may be
expressed as

(M +M )G+ Coi+ (K +K p)a =1 +f,. (12)

This set of equations comprises two types of terms, lyaplate dynamics terms that are independent gf X,
y, X or §y (M, K andf) and moving mass contribution terms that are dependent,ypon, y, X or § (M, Cn,
Kmandf).

It is plausible to envisage situations where the doutilins of the moving loads to the overall system resparese
negligible when compared with the corresponding termsatatndependent of the planar variabley and their
derivatives. The possibility of these scenarios imghes perturbation based solution techniques can be reautilied
to the problem. To this end, the total displacenggistexpanded as a summation of terms,

n
q= Zqi for n - oo, such that lleti ) < i - (13)
i=0

Making use of the above expansion in Eq. (12) permits thexgeusition of the system of governing equations into
a sequence of equations which may be written as:

Md, +Kqg =f
MG, +Ka; =f =M o = Crllo ~K o

Mg, +Kq, =-M mql_CmQ1_KmQ1 . (14)

M@, +Kqg, =-M b, _Cmqn—l_ Kmlna

The convergence characteristics of the perturbatioassgiven in Eq. (13) is investigated with a modifiechfaf
the governing equation Eq. (12). This is expressed as

(K+K g =F+F,, (15)

where K and Km represent effective stiffness matrices, dncnd f m denote effective vectors that are typical of

forward time integration schemes such as Wilan-Newmark method. The exact solution of the governingtemua
Eq. (15), is given as

Qorace = || +K K K +F,,): (16)

For a series expansion witht+ 1 terms, whera > 1, the solutions to the perturbed equations, i.e(Xq, are:

ao=K ¥
ay =K, ~K o)
9, =K 'Kty - (17)

an = _K_]-Kmq n-1

The errore (i.e. zi 0; ~Jexact) IS €Xpanded as

e=do + (1 +K K ) 711 + (KK ) "IK ™ (Fry = Kinflo) = (1 #K 7K ) K +F1m) = (18)
(1 + KK 1) (KK ) K =K K ) '
This shows that the leading term in the error equaﬁoﬁ?i‘le). If the effects ofK,, are very small when

compared to those due 0, then (K‘le)” must converge t0 asn — . It is observed via numerical simulations
that numerical convergence within machine precisiguaéanteed with a smail



3. Mindlin elements and adaptive meshes

The shear locking (Hughes, 1987) phenomenon associatedMaittlin elements has received a considerable
attention in the literature. On the other handlelitir no attention has been directed to the propensitfinfllin
elements to inaccurately predict responses of systethscamcentrated loads that are arbitrarily locatethindomain
of the systems. This may partly be because most of thgsesanvolving concentrated loads consider such loads to b
fixed at a point (i.e. stationary) that is usually coinotdeith a node.

This observation is demonstrated by the use of a mpat@nplate of length 60 m, width 30 m, and thickness of
0.577 m. The plate is clamped along the edges and it is mexefmaterial with a Young's modulus of 200 GPa and a
Poisson ratio of 0.30. It is assumed that 100 static loags Gag applied on the plate at evenly spaced interealg a
the center line lengthwise (i.¢= 15 m). The commercial FEM software Nastran is useihtolate the scenario with
bilinear elements CQUADA4.

The first simulation comprises 20 elements alongehgth and 12 elements along the width. The second hagl40 an
24 elements, respectively. Bilinear interpolation fumtsi are used to derive consistent nodal loads at iestaviten a
concentrated load is located at an off-nodal point. Thelteesre depicted in Fig. 2 in terms of normalized
displacements.
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Figure 2. Displacement under stationary load (Nastrsuts}

The results for an identical scenario but with the ugsbefdaptive meshing scheme to ensure that the costeehtr
loads are always at nodal points are shown in Fig. & Blelifferent mesh is generated for each load casen€klees
used to generate these results do not yield the sameenoifiddements but they yield approximately the same eumb
of degrees of freedom. Figure 4 is a schematic of hogetblements are distributed in a simple adaptive meshrée
concentrated load locations.
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Figure 3. Displacement under stationary load (Nastrau fand proposed adaptive mesh)
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Figure 4. lllustration of the adaptive meshes concept
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Given that the mesh in the dynamic problem changeacht tfme step, it is imperative to develop a procedure to
map the old mesh onto the new mesh. Such a procedube explained with the aid of Fig. 5. Assume that the @sgre
of freedomu, v, w, ¢, ¢ associated with nodg.,, of the new mesh are sought. The first step is to idetii& element
of the old mesh that contains the nadg The local coordinated 77 of nodei e, are determined thereafter. Finally, the
degrees of freedom associated wijth, are evaluated and degrees of freedom associated withiggdgs, Kog andlog
are interpolated using the local coordinafeg that were determined in the second step of the procedure.
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Figure 5. Mesh mapping technique

4. Numerical Simulations

The proposed strategy is independent of the type of steu@tar plate or shell), the shape of the structurettaad
prevailing boundary conditions. For the purpose of demdiwstraconsider a rectangular plate with a length of 100
width of 10 m, and thickness of 0.30 m. The Young’s modulus of #terial of which the plate is made is 31 GPa, the
Poisson ratio is 0.25, and density is 2500 Kg/fhe plate is simply supported along the two shorter eglgedree
along the two longer edges.

Two dynamic cases are considered: (i) a concentrated bf 1.&10° N that moves lengthwise with a velocity of
20 m/s, and (ii) a 10,193.68 kg concentrated mass that mavgthWwise with a velocity of 20 m/s. The magnitude of
the moving mass is consistent with a gravitationakkeation of 9.81 mfs The adaptive meshes used comprise two
biguadratic elements along the shorter side and twégadratic elements along the longer side.

The overall normalized transverse displacement for atltoncentrated force and moving mass are shown in Fig.
6. The normalizing factor is the midpoint transverseldiement of the plate under a concentrated force sfLI°MN
applied transversely at the plate midpoint or center. Tagnitude of the displacement in this case is 0.783 m. The
results, as depicted in Fig. 6, show that the transdsptacements due to the moving mass are higher thae tfithe
moving force. This observation is in accord with theported in the literature (Huang and Thambiratnam, 2002;
Shadnam, Modif and Akin, 2001); it is solely the consequehtee inertia contributions of the moving mass. Futthe
it is noted that the ripples in the scenarios withouptida mesh strategy (i.e. Figs. 2 and 3) are absent.

The perturbation series is as defined in Eq. (13) but evith three termsgp, g1, g2). The contribution of each term
to the overall transverse displacement of the ptateitially investigated. A plot of the respective malized transverse

displacements (i.ewa, w; and w;) is shown in Fig. 7. Also shown is the resulting platemalized transverse

displacementw’ =w, +w; +Ww,. The plots show thaty, is the dominant term. Ther, contribution is not noticeable
within the scale of the plot. Thus a two-term pertudpaseries is sufficient for the required precision.
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Figure 6. Rectangular plate transverse displacements
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The suitability of the proposed strategy for diverse dorshapes and boundary conditions is now demonstrated via
the use of a circular plate that is is fully clamped alésgpérimeter. The plate has 5 m radius, 0.10 m thiclaredss
made of the same material as that of the rectangldte in the preceding example. A concentrated load ofLO?N
orbits around the plate center at a distance of 2 magthda constant angular velocity of10 rd/s. The meshes used
have three biquadratic elements along the radial direaiah six biquadratic elements along the circumferential
direction.

The result of the simulation is presented in Fig. 8 @gnamic transverse displacements at the plate carger
normalized with respect to the transverse displacenatrttee plate center (0.180 mm) when the concentratetlis
applied at the center. The initial state of the systeguch that the plate is at rest and the concentratdddastatically
positioned at the distance of 2 m from the plate ceffteis explains the nonzero value (= 0.53 to be precise)
observed attimet=0 s.

High frequency content is observed in the dynamic resparisthe circular plate. This constitutes a major
complication in the traditional modal decomposition daaealysis methods because of the need to include several
modes in the analysis. In order to capture the high freagueontributions, the present simulation uses a titep of
0.001 s, which is 50 times smaller than the 0.05 s used ga#ieeof the rectangular plate simulation.
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Figure 8. Circular plate transverse displacements
5. Comments and conclusions

The present work proposes a new strategy for the dynammualations of concentrated moving loads when
relatively coarse meshes are used. The strategy ms/dhe use of adaptive meshes that follow the load path in
manner that ensures that the point of application ofdh@ is always coincident with a node. The adaptivityhe
mesh requires the implementation of global matrix decoitiposat each time step. This is not computational
prohibitive because of the coarseness of the mesh.



The elements considered in the present study do notiexpershear locking and reduced integration is not
employed. While this will not be the case when using exdhethin plates, neither the efficacy of the adaptiesh
strategy nor that of the proposed perturbation apprisaekpected to deteriorate.

The perturbation approach has the advantage of clegpbrating the effects of just a concentrated force thase
due to inertia consideration. It is observed that thebmurof terms in the expansion series required for higinedeof
precision is directly dependent upon the relative iaebitween the base structure and the moving masseHen
scenarios in which heavy masses traverse relativghy base structures would require higher number of terntein t
perturbation series and perhaps the use of a nonlinear.solve
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