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Abstract. The design of vibration absorbers has been recurrently received attention from researchers due to the 
importance of efficiently control undesired vibration in structures. In this paper, the well-known two-degree of freedom 
vibration absorber theory is extended to multi-degree of freedoms and applied to the supression of beam vibrations. 
The analytical solution is based on the Euler/Bernoulli Beam Theory. A finite element model of the problem also 
presented here enriches the theoretical solution by including additional effects due to beam rotational inertia and 
shear deformation, approaching to the Timoshenko Beam Theory. A small scale experiment, with an unbalanced 
electrical fun as the excitation source of a beam, is explored in order to validate the presented theory.  Finally, a 
parametric study is conducted in order to assist the design of vibration absorbers. 
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1. Introduction  
  

The work of Den Hartog in 1956 made well known the two-degree-of-freedom dynamic absorber and it has been a 
source of inspiration for many theoretical developments and practical applications in the field of vibration suppression. 
Jalili and Olgac (1999) applied the theory in a wider context by introducing more than one absorber but still based on 
multi-degree systems. On the other hand, Malfa et al (2000) solved a practical case of vibration suppression using a 
continuous system as a single absorber in a circuit board. However, the authors did not model their solution as a 
continuum system despite asserting that the observed good results were promising and could be extended for bigger 
structures as used in naval or civil engineering systems. Recently, Ren (2001) introduced an additional external damper 
on an ordinary absorber and proved that the existence of two no-damping-dependent points in the amplitude response 
curves is maintained.  

The present paper introduces another kind of variance of the classical absorber of Den Hartog by extending the 
ordinary two-degree of freedom absorber concept to a continuous beam, so that the theory can be verified in a more 
practical situation of distributed-parameter systems. This generalization leads to a boundary value mathematical 
problem, instead of the more easily handled matrix equilibrium equations of lumped systems. It is presented in detail 
the alluded mathematical model and its solution. A practical case of vibration suppression using a continuous system is 
solved in order to show the application of the solution here developed.  
  
2. Vibrating Beam Theory 
  

Considering the case of a Euler/Bernoulli slender beam (with no rotational inertia and no shear deformation effects) 
in bending vibration, the dynamic equilibrium differential equation can be expressed by (Clough, 1975): 

 
 ),(),(''''.),(.),(. txptxvEItxvctxvm =++ &&&                         (1) 
 

where m  is the mass per unit length [Kg/m=N.s2/m2] , c is the damping per unit length [N.s/m2], EI is the bending 
stiffness [N.m2], v(x,t) is the beam transversal displacement [m] and p(x,t) is the distributed load over  the beam span 
[N/m]. 

In order to apply modal superposition to solve this equation, it is necessary to obtain natural frequencies and shape 
modes for the undamped free vibration case, such that Eq. (1) becomes: 
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Figure 1 The Experimental Device and corresponding simplified Theoretical Model 
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Denoting subscripts  
 
 j=1  for the Main System (Cantilever Beam) 
and  
 j=2 for the Absorber. 
 
We may write: 
 
mj = Beam Mass per unit Length 
Ej = Material Young Modulus 
Ij = Beam Bending Inertia 
Mj = Translatory Concentrated Inertia 
Jj = Rotatory Concentrated Inertia 
Lj = Beam Span Length 
 
 
And for Fan Excitation Properties:  
me = Unbalanced Mass 
e = Eccentricity of Unbalanced Mass   
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The solution of  Eq.(2) for a single span beam is harmonic and given by the well known separation-of-variables 
solution ( ) ( ) ( ) ( )twxtyxtxv .sen.).(, φφ == , such that,  
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with 4321 CCCC ,,,  integration constants that depend on the boundary conditions and w  the circular frequency of 

oscillation [rad/s], related with the parameter β by 
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As shown in Fig. 1, the absorber configuration here explored consists of two single span beams. Considering that in 

free vibration the beams oscillate with the same frequency, Eq. (5) is rewritten as 
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where subscript 1 is related to the main span, i.e, the principal system to be cured of harmful vibration, and subscript 2 
indicates the span which is the absorber itself. These spans generate two sets of integration constants, so that Eq. (4) can 
be generalized to 
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Equation (7) refers to a two span beam problem with eight integration constants Ckj (k=1,2,3,4 and j=1,2), defined by 
applying eight boundary conditions.  
 
2.1. Boundary conditions 
  

By observing Fig.1 we can write the following boundary conditions: 



 
1. Position A of span 1 has no translation  
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2. Position A of span 1 has no rotation  
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3. At position B, the spans have the same translation  
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4. At posit ion B, the spans have the same rotation 
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5. Moment equilibrium at position B is given by 
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6. Transverse force equilibrium at position B is given by 
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7. Bending moment at position C, due to rotational inertia of the absorber concentrated mass, is given by 
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8. The transverse shear force Q at position C due to the translation inertia of the absorber mass 
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2.2. Natural Frequencies and Mode Shapes 
  

By introducing Eqs. (8.a)-(8.h) into the equilibrium differential equation (7), it can be recast in the following matrix 
form: 

 

[ ]{ } { }TT
4232221241312111 0,0,0,0,0,0,0,0CCCCCCCCA =,,,,,,,.)(λ  

 
or 
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In Eq. (9), 11 L.βλ =  is the parameter that controls the existence of solutions different from the trivial null one, 

i.e. ( )jk0Ckj ,, ∀= . Therefore, in order to obtain the non trivial solutions, the solutions for Eq. (9) are the eigenvalues 

( )iλ , such that 
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In addition, in view of Eq. (6), each root iλ  furnishes a corresponding value for the natural frequencies of this 
double-span problem: 
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It is interesting to point out that Eq. (11) depends only on the geometrical properties of span 1. All other properties 
of the problem have their influence implicitly accounted for in matrix )(λA .  

Now, by solving Eq. (9) repeatedly for each eigenvalue iλ  ( ∞≤= n321i ,...,,, ), n different sets of the constants 

kjC   (k=1,2,3,4 and j=1,2) are obtained, each set corresponding to one eigenvector or mode shape. Accordingly, the 

combination of Eqs. (6),  (7) and (11) leads to the following expression for the mode shapes  
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The explicit formulation of matrix )(λA  includes laborious derivatives and algebraic manipulations so that, for 

sake of space, it is not described here. The matrix )(λA  and the roots of Eq. (10) were obtained by using symbolic 
operations in the program MATLAB®.  
  
2.3. Harmonic (Steady State) Response 
  

Considering the purpose of this work, a harmonic force ).sen(.)( twptp o=  applied at the concentrated mass in 
point B, Fig. 1, excites the main system. By applying Modal Superposition (Clough, 1975) the response depends on the 
following generalized properties for mass, stiffness and load, respectively, 

 

)()(...........................................................

..............)()()()(~

'

'

21
2

i2221
2
i22

1
2

i111
2
i11

2L1L

1L

2
i22

1L

0

2
i11i

LLJLLM

LJLMdxxmdxxmm

++++

++++= ∫∫
+

φφ

φφφφ
                 (13.a) 

 
2
iii wmk .~~

=                                  (13.b) 
 

).sen(~)()]..sen([)(~ twpLtwptp oi1i1oi == φ    with    )()...()(.~
1i1

2
e1i1ooi LwemLpp φφ ==             (13.c) 

 
with known natural frequencies iw  and shape modes φji. The amplitude of the excitation po is due to the unbalanced 

force on the fan. It depends on the square of excitation frequency w , the unbalanced mass me and the eccentricity e. 
Now, by using the simple solution for harmonically excited single degree of freedom system (Clough 1975), the 

stead state response can be written as  
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Taking Eqs. (14.a)-(14.e) for 1Lx =  and then for 21 LLx += , after some manipulation, the response amplitudes at 
points B (main system) and C (absorber), respectively, are given by 
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The final expression can be obtained substituting the definitions presented in Eqs. (15), but it is a huge task and has 

no practical meaning. Again, by using MATLAB®, one can solve the entire problem with the equations presented in 
this section. 
  
3. Results and Discussion 
  

In order to explore the proposed model, the absorber showed in Figure 1 was conceived, according to the properties 
listed in Tab. 1. In the same table, the natural frequencies measured in the experimental analysis can be compared with 
those obtained from the proposed mathematical model and from a Finite Element simulation of the problem. 

In the finite element simulation, a simple beam element was initially adopted to model the beams in order to use the 
same hypothesis of the analytical model. The obtained results were very similar to the analytical model, with deviations 
in the natural frequency not greater than 0.01 Hz, and so are not shown in Tab. 1.  

The problem was also solved using solid finite elements, whose discretization can be seen in Figure 2. This element 
has fewer assumptions than the analytical and FEM pure beam models since distributed rotational inertia and shear 
deformation effects are inherent in the solid element assemblage (Bath, 1996). Accordingly, a more realistic model is 
reached. The results for this solid modeling are also shown in Tab. 1. 

 
Table 1. Problem Data  & Analytical (ANA), Numerical (FEM) and Experimental (EXP)  

Results for Natural Frequencies [Hz] 
DATA (see Fig. 1) ABSORBER MASS (M2)(1) 

 Lj mj Mj Jj Ej  Ij 0.000 Kg 0.004 Kg 
j [m] [Kg/m] [Kg] [Kg.s4] [N/m2] [m4] MODE(2) FEM(5) ANA EXP(3) MODE(2) FEM(5) ANA EXP(3) 

 10-2 10-3 10-3 10-5 1010 10-

12 
1 19.71 20.70 19.4 1 18.56 20.06 18.2 

1 30 322 165 26 7 424 - - - - 2 24.42 30.74 26.8 
2 6.1(4) 6.2 4(1) 0 21 0.05 2 142.2 166.5 - 3 150.2 166.9 - 

(1): The distributed mass of the absorber beam is negligible compared with the concentrated mass, so that M2=0 means that the 
absorber is inactive otherwise M2≠0 means active 
(2): With no mass M2, the lowest resonance frequency corresponds to the system operation point. When M2 is introduced, the 
first natural frequency of original system is replaced by two surrounding new natural frequencies.  
(3): In the experimental analysis, the resonance frequencies are measured by using a stroboscopic light. Due to limitations of the 
cooler, the excitation frequency could not be larger than 40 Hz.  
(4): In the experimental device, after introduction of absorber mass M2, the length L2 is continuously adjusted until an anti-
resonance point is reached.  
(5): Solid model of fig.2 

 
Figure 2. Finite Element Model showing Third Natural Mode Shape 

  



The FEM harmonic solution employs the Direct Integration Method (Bath, 1996) so that, to comply with our analytical 
solution, some conversions of the damping properties are necessary. The coefficients of Rayleigh Damping Matrix, 
needed for Direct Integration, can be related to the modal damping ratios by using the orthogonal properties of mode 
shapes, so that  
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where a  and  b  are the Rayleigh  coefficients  related to Mass and Stiffness Matrices, respectively. Now, taking the 
two lowest mode shapes and applying twice Eq. 6, these coefficients are given by   
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Figure 3. Solutions for Harmonic (Stead State) Response 
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If the same damping ratio is adopted for both mode shapes ( 21 ζ=ζ=ζ ) and, in addition, the natural frequencies 

are converted to Hertz unit ( ]Hz[f.2]s/rad[w ii π= ), coefficients a and b will be defined by  
 

ζζπ .19166.1)/1/1.(.4 21 ≅+= ffa                   (18.a) 
 

026.135/).(/)/( 21 ζπζ ≅+= ffb                   (18.b) 
 
using the numerical values listed in Tab. 1. 

Considering =ζ 1 %, Fig. 3 shows Frequency Response Curves obtained by the FEM solid model in comparison 
with the analytical solution of Eq. (15) for both situations: with and without absorber. It is clear that the vibration 
amplitude of the main system drops drastically when absorber is activated.  

The observed deviations in peaks locations are mainly due to natural frequency differences, as shown in Tab. 1. The 
FEM solid model fits better the experimental results due to the reasons pointed out previously. On the other hand, FEM 
beam and analytical models tend to give more reliable results when the length of the beams increases. 

Moreover, the difference in peak magnitude can be related to damping formulations as well as to damping values. In 
this concern, to better approach theoretical and experimental results it should be necessary to measure vibration 
amplitudes and, then, to calibrate the models by varying the damping coefficients. 
 
4. Conclusions 
 

The analytical approach presented here for a dynamic absorber is an extension of the two-degree-of-freedom 
classical problem to a continuous beam system. Experimental observations and FEM results were used to validate the 
proposed model. The results indicate that, in case of periodic excitation when more than one harmonic component may 
be present in the stead state response, it is possible to use two or more absorbers, each one tuned to absorb one specific 
harmonic component vibration. As an extension of the problems studied here and in the work of Jalili and Olgac 1999, a 
future work may be focused on this direction. On the other hand, improvements of the absorber design by inserting 
automatic control over its length, as shown in Appendix A, makes feasible to conceive smart absorbers which would be 
always tuned to the vibration to be suppressed.  
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Appendix A. Smart Absorber 
 

An proposed extension to the traditional absorber is here called smart absorber, which can be adjusted according to 
excitation frequency, minimizing the response amplitude of the main system for a given frequency range. In order to 
illustrate it, lets take a simple two-degree of freedom with no damping. Being 1 the subscript that denotes the main 
system and 2 the absorber, the equilibrium equation in forced harmonic vibration can be written as: 
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Since the excitation is harmonic, the steady state response is also harmonic with frequency ω  and amplitudes 01X  

for the main system and 02X  for the absorber. Then Eq. (A.1), solved by Direct Analytical Integration, furnishes the 
following result 
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where µ  is the mass ratio: 21 / MM  and )2,1( ==Ω iMK iii  are natural frequencies of main system (i=1) and 

absorber (i=2). From Eq. (A.2), one can see that if the absorber tuning is adjusted so that its natural frequency coincides 
with the excitation frequency ( )ω=Ω 2 , the amplitude of main system vibration is null, i.e., it remains standing for any 

excitation frequency and amplitude ( )oPX ,,0)(01 ωω ∀= . On the other hand, the absorber vibrates with amplitude 
2

02 /)( ωω oPX −= , in order to apply in the main system a force constantly contrary to the excitation force.  
When damping is taken is account, the simplicity in the response is unfortunately lost. However, the main 

conclusion remains: there is a tuning frequency for the absorber that reduces the main system amplitude to a minimum 
value (perhaps not a null value, but still small one).  

In order to verify this conclusion, in the case of beam model of Fig. 1 excited in a given range of frequency, the 
equations of Section 2 can be solved for different values of absorber length L2 and absorber mass M2, so that we can 
find an optimum relation, for each frequency, that minimizes the main system vibration. As can be seen from Eq. (A.2) 
and Fig. 3, absorber properties are chosen in order to make the anti-resonance frequency coincides with excitation 
frequency.  

In this context, the solution strategy can be as follow. For a given absorber mass it is necessary to look for the 
absorber length that minimizes the amplitude of main system, for each frequency. The curves in Fig. A.1, plotted for 
different masses, were obtained for the case summarized in Table 1. In this way, the principle of the smart absorber is 
that the length L2 is changed with the excitation frequency according to the plotted curves, in order to mitigates the main 
system vibration. Of course for a practical application it is necessary to control the absorber length by an automatic 
mechanism. 
  

Figure A.1. Optimum Properties of Smart Absorber 
Case of table 1 with absorber mass ( M2 )= 4 ; 5 ; 6 ; 7 and 8 g 
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