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Abstract. This paper presents the design of an adaptive tracking control law that guarantees stability for a tracked

mobile robot under unknown longitudinal slip conditions. The final control law is obtained using two independent control

design method. First, a velocity controller is designed for the kinematic steering system to enforce the tracking error to

asymptotically converge to zero. Second, a torque controller is designed such that the true mobile robot velocity follows

the desired velocity generated by the first controller. Finally, an update rule is used to estimate the slip parameter in

real time. The asymptotic stability of the global closed-loop system is ensured using an appropriate Lyapunov function.

Numerical results shows the usefulness of the proposed modeling and control strategy.
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1 INTRODUCTION

Recently, the interest in mobile robots has grown significantly because of its large applications in unstructured en-

vironments where a high degree of autonomy is required. Despite the fact that the kinematic model of tracked vehicles

is in general similar to the models used for wheeled robots, the tracked mobile robots have much larger ground contact

patches, that provides better stability and traction at various terrain conditions compared to the conventional wheeled

robots (Nourbakhsh and Siegwart (2004)).

Tracked mobile robots are typical example of systems that has nonholonomic constraints. Much research effort has

been carried out in order to solve the problem of the motion for nonholonomic mobile robot (d’Andréa Novel et al. (1995);

Yang and Kim (1999); Oriolo et al. (2002)). Most existing methods usually assumes there exists a dynamic controller that

is able to produce the velocity profile generated by the kinematic controller.

Control design method for kinematic and dynamic controllers for nonholonomic robots are presented in Mnif and

Touati (2005); Wu et al. (2009); Ju et al. (2009). In these works, the control design is split in two parts. The first part

provides a kinematic controller, based on the robot kinematics, and the second part provides a dynamic controller, based

on the robot dynamics. The dynamic controller is capable of estimating some physical parameters of the robot (Martins

et al. (2008)). However, most of the results on the control design of nonholonomic robots are based on the assumption

that the kinematics of the system is exactly known and there are only uncertainties in the dynamics of the system. On the

other hand, our work takes into account an unknown slip condition in the kinematic of the system.

Many researches have addressed the slip phenomenon in the navigation of wheeled mobile robots (Wang and Low

(2008); Sidek and Sarkar (2008); Gonzales et al. (2009)) and of tracked mobile robots (Zhou et al. (2007); Zhou and Han

(2008)). However, in most of those works, the slip parameters are assumed to be previously known or estimated through

some filtering algorithm. Here, we propose an update rule to estimate the slip parameter, based on Fukao et al. (2000).

The uncertainties in the dynamics of the system is not considered. For trajectory tracking, it is only required to show that

the center of mass of the vehicle follows the desired trajectory (Eghtesada and Necsulescub (2006)).

In this paper, feedback velocity control inputs are designed, according to Fierro and Lewis (1997), for the kinematic

steering system to assure the position error converges to zero. Next, a torque feedback control law is designed such that

the velocities of the mobile robot follows the desired velocity profile. The velocity and torque controllers are designed

independently. An update rule is also designed such that the estimated slip parameter converge to the true slip parameter

of the tracked robot. The update rule is obtained using a Lyapunov function that guarantee close-loop stability.

The paper is organized as follows. In section 2, the kinematics of the tracked mobile robot model is derived. In

section 3, an adaptive tracking controller is designed for the tracked mobile robot model and the stability of the proposed

control system is shown using a Lyapunov function. Section 4 presents the numerical results. Conclusions are presented

in section 5.
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2 MODELING OF THE TRACKED MOBILE ROBOT

In this section, the model of the tracked mobile robot is derived. First, the kinematic equations of tracked vehicles

under slip condition are presented. Next, the dynamic equations that govern the vehicle are obtained using the Lagrange

formulation.

2.1 Kinematic Equations Under Slip Conditions

The slip is described by a time-varying parameter, under the assumption that the robot will operate at low velocities.

In this work, we only consider the longitudinal slip. The lateral slip is zero for straight line motions, and it can be neglected

when the vehicles turns “on the spot” or at low velocities. Fig. 1 depicts the mobile robot, its parameters and the variables

of interest.
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Figure 1. Tracked mobile robot representation.

In order to describe the motion of the tracked vehicle, its is defined a fixed reference frame F1(xw, yw) and a moving

frame F2(xm, ym) attached to the vehicle body with origin at the geometric center Om of the vehicle. The motion of

the vehicle is composed of the translation velocity v and the rotational velocity ω = dψ/dt, where v is the velocity of

the vehicle in the xm-axis direction and ψ is the yaw angle. Furthermore, the motion of the vehicle is constrained in the

ym-axis direction, with vy = 0 (nonholonomic constraint).

The longitudinal slip ratio of the two wheels is defined as follows

i =
(rωL − vL)

rωL

=
(rωR − vR)

rωR

, 0 ≤ i < 1

where r is the radius of the wheels, ωL and ωR are the angular velocities of the left and the right wheels respectively and

vL and vR are the linear velocities of the left and the right wheels in absence of the slip.

In the moving frame F2, the model with longitudinal slip is given by

v =ẋ =
rωL(1 − i) + rωR(1 − i)

2
vy =ẏ = 0

ω =ψ̇ =
−rωL(1 − i) + rωR(1 − i)

b

where b is the distance between the two tracks.

After applying some appropriate rotation matrix, from the reference frame F2 to the reference frame F1, the kinematic

model can be written as





Ẋ

Ẏ

ψ̇



 =













r(1 − i)

2
cosψ

r(1 − i)

2
cosψ

r(1 − i)

2
sinψ

r(1 − i)

2
sinψ

−r(1 − i)

b

r(1 − i)

b













(

ωL

ωR

)

= S(q)ξ (1)

where q = (X,Y, ψ)T denotes the coordinates of the tracked vehicle in the inertial Cartesian frame F1. The angle ψ is

assumed to be in (−π, π].
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The auxiliary velocity η is defined as η = (v, ω)T and the effective velocity ξ for the model (1) is defined as ξ =
(ωL, ωR)T . Note that η is related to ξ according to the following equation

(

v
ω

)

=







rωL(1 − i) + rωR(1 − i)

2
−rωL(1 − i) + rωR(1 − i)

b






= T

(

ωL

ωR

)

(2)

with

T = r

(

(1 − i)/2 (1 − i)/2
−(1 − i)/b (1 − i)/b

)

We also have that ξ = T−1η is given by

(

ωL

ωR

)

=
1

r







1

(1 − i)
−

b

2(1 − i)
1

(1 − i)

b

2(1 − i)







(

v
ω

)

(3)

Substituting (3) in (1), we arrive to the following model

q̇ = Sa(q)η

with

Sa(q) =





cosψ 0
sinψ 0

0 1



 (4)

Note that the nonholonomic constraint ẏ = 0 restrict the robot to move only in the direction normal to the axis of the

driving tracks. This nonholonomic constraint can equivalently be written in the frame F1 as

(

− sinψ cosψ 0
)





Ẋ

Ẏ

ψ̇



 = A(q)q̇ = 0 (5)

2.2 Dynamic Equations of the Mobile Robot

The Lagrange formalism is used to derived the dynamic equations of the mobile robot. The trajectory of the mobile

robot is constrained to the horizontal plane, thus its potential energy U remain constant. The kinematic energy T is given

by

T (q̇) =
1

2
q̇TMq̇

with

M =





m 0 0
0 m 0
0 0 I





where m is the total mass of the mobile robot and I is the moment of inertia about the vertical axis through Om.

Using the fundamental nonholonomic form (Greenwood (2003)) of the Lagrange’s equation

d

dt

(

∂T

∂q̇i

)

−
∂T

∂qi
= Qi + Ci (i = 1, ..., n)

where Qis are the generalized applied forces and Cis are the generalized constraint forces for a system specified by the

values of its n generalized coordinates, we obtain the following dynamics for the mobile robot:

Mq̈ = B(q)τ −AT (q)λ (6)

where q = (X,Y, ψ)T has been defined in section (1), the input torque in left and right wheels is given by τ = (τL, τR)T ,

the vector of constrained forces is λ, the matrix A(q) is given in (5) and the matrix B(q) is given by

B(q) =
1

r





cosψ cosψ
sinψ sinψ
b/2 b/2




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The dynamics is now represented in a more appropriate form for control purposes. Note that we can eliminate the

constraint matrix AT (q)λ by differentiating (1), substituting the result in (6) and finally multiplying by ST (q). The

complete equations of motion of the nonholonomic mobile platform are thus given by

q̇ = S(q)ξ (7)

Mξ̇ = B(q)τ (8)

where M = ST (q)MS(q) and B(q) = ST (q)B(q).

3 CONTROL DESIGN

In this section, we consider the tracking control problem of the tracked mobile robot subject to the dynamic part (8)

and the kinematic part (7) with the slip considered as the time-varying parameter i. The design is divided in three steps as

follows: first, a backstepping tracking control law is found neglecting the slip; next, an update rule is designed to estimate

the slip parameters; and finally, closed-loop stability is shown using an appropriate Lyapunov function.

3.1 Backstepping Controller Design

In order to apply the proposed control design, it is necessary to represent the system (7)-(8) in the integrator back-

stepping form (Khalil (2001)). For this purpose, let u be an auxiliary control input for dynamic part, then by applying the

law

τ = B(q)−1Mu (9)

we obtain the following form

q̇ = S(q)ξ (10)

ξ̇ = u (11)

To apply the procedure, we first determine a desired velocity control law ξd for (10) that drives to zero the error

between the trajectory q and the reference trajectory qr without slip. The reference qr = (Xr, Yr, ψr)
T , in the fixed frame

F1, is generated using the kinematic model

q̇r = Sa(qr)ηr

that is




Ẋr

Ẏr

ψ̇r



 =





cosψr 0
sinψr 0

0 1





(

vr

ωr

)

(12)

where ηr = (vr, ωr)
T is a desired linear and angular reference trajectory. It is assumed in (12), that the signal ηr is

constructed to produce the desired motion and that the signals ηr, η̇r, qr, q̇r are bounded for all time t. It is also assumed

that ψr ∈ (−π, π] and that vr does not go to zero as t→ ∞.

In order to analyze the tracking problem, we define the error ec = (e1, e2, e3)
T in the frame F1 as





e1
e2
e3



 =





cosψ sinψ 0
− sinψ cosψ 0

0 0 1









Xr −X
Yr − Y
ψr − ψ



 (13)

The dynamics of the error ec, derived using (4) and (13), is given by




ė1
ė2
ė3



 =





ωe2 + vr cos e3 − v
−ωe1 + vr sin e3

ωr − ω



 (14)

Neglecting the slip, Fierro and Lewis (1997) showed that the following control input
(

v
ω

)

=

(

vr cos e3 + k1e1
ωr + vrk2e2 + k3 sin e3

)

(15)

with ki > 0, drive the error signal ec to zero in the region D = {ec ∈ R
3 | −π < e3 < π}, using the following Lyapunov

function

V0 =
1

2

(

e2
1

+ e2
2

)

+
(1 − cos e3)

k2

> 0
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whose derivative satisfies the inequality

V̇0 = e1ė1 + e2ė2 + ė3
sin e3
k2

= −k1e
2

1
−
k3

k2

sin2 e3 ≤ 0

Under the conditions V1 > 0, V̇1 ≤ 0 and that ė is bounded, Fierro and Lewis (1997) proved using the dynamics

of the system and Barbalat’s Lemma (Li and Slotine (1991); Khalil (2001)) that the error e converge to zero. Therefore,

neglecting the slip, the feedback control law ξd that guarantee asymptotic stability for (10) is given by

ξd =

(

ωLd

ωRd

)

=
1

r

(

1 − b
2

1 b
2

)(

v
ω

)

(16)

with v and ω given by (15).

It is now necessary to convert the velocity control law ξd into an input torque control τ that will be applied to the

system. For this purpose, we define an auxiliary velocity error by

ed =

(

e4
e5

)

= ξ − ξd (17)

where ξ − ξd represents the error between the vector of the true and desired angular velocities.

The input u, which assure that ed converges to zero, is given by the following expression

u = ξ̇d +

(

k4 0
0 k4

)

(ξd − ξ) (18)

where k4 is a positive constant.

The derivative of the error ed, using (11), (17) and (18), is given by

(

ė4
ė5

)

= −

(

k4 0
0 k4

) (

e4
e5

)

(19)

To show that the entire error e = (ec, ed)
T goes to zero as t → 0, we consider the following Lyapunov function

candidate

V1 = V0 +
1

2k4

(

e2
4

+ e2
5

)

=
1

2

(

e2
1

+ e2
2

)

+
(1 − cos e3)

k2

+
1

2k4

(

e2
4

+ e2
5

)

> 0

whose derivative satisfies the inequality

V̇1 = e1ė1 + e2ė2 + ė3
sin e3
k2

+
e4
k4

ė4 +
e5
k4

ė5

= −k1e
2

1
−
k3

k2

sin2 e3 − e2
4
− e2

5
≤ 0

Under the conditions V1 > 0, V̇1 ≤ 0 and that ė is bounded, it can be proved using similar ideas as before that the

error e converges to zero.

3.2 Update Law and Lyapunov Analysis

If the parameter i in (1) is unknown, we cannot choose the desired velocity as given by (16). Hence, it is necessary to

design an update rule to attain the control objective using the estimate for i. First, we redefine the slip parameter as

a =
1

(1 − i)
, 0 ≤ i < 1

Then, the relation (16) can be written as a function of the new slip parameters a.

Since this parameter is not known, we use a formula for (16) considering now the estimate â for a, given by

(

ωLd

ωRd

)

=
1

r







â −
b

2
â

â
b

2
â







(

v
ω

)
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where the estimates â = a+ ã is the true value a plus the estimate error ã.

In order to derive the update rules, it is necessary to calculate (14) that depends on the auxiliary velocity (2), which is

a function of the effective velocity (3). The derivative of the error ėc is given by:

ė1 = −
a+ ã

a

(

e2
b

+
1

2

)(

v −
b

2
ω

)

+
a+ ã

a

(

e2
b

−
1

2

)(

v +
b

2
ω

)

+ vr cos e3

ė2 =
a+ ã

ba

(

v −
b

2
ω

)

e1 −
a+ ã

ba

(

v +
b

2
ω

)

e1 + vr sin e3

ė3 = ωr +
a+ ã

ba

(

v −
b

2
ω

)

−
a+ ã

ba

(

v −
b

2
ω

)

(20)

To obtain the update rule, we consider the following Lyapunov function candidate

V = V1 +
ã2

2γa
(21)

with a ≥ 1 and γ > 0.

The derivative of V is given by

V̇ = e1ė1 + e2ė2 + ė3
sin e3
k2

+
e4
k4

ė4 +
e5
k4

ė5 +
ã

γa
˙̂a (22)

Substituting equations (19) and (20) in (22), we obtain

V̇ = V̇1 +
ã

a

[

˙̂a

γ
−

(

ve1 +
bω sin e3

2k2

)

]

Now, choosing the update rule for â as

˙̂a = γ

(

ve1 +
bω sin e3

2k2

)

(23)

The equation for V̇ take the form

V̇ = −k1e
2

1
−
k3

k2

sin2 e3 − e2
4
− e2

5
≤ 0 (24)

It is now possible to guarantee closed-loop stability by showing that e = 0 is an asymptotically stable equilibrium.

Let the domain D be given by D = {e ∈ R3 | − π < e3 < π}, then the Lyapunov function given in (21) is positive

definite in D − {0} with derivative V̇ ≤ 0 in D. This implies that the error e and the estimate parameters are bounded.

Since the reference velocity ηr = (vr, ωr)
T is assumed to be bounded, we known from (15) that the velocity η is also

bounded. Thus, ė is bounded by (14). After all, V̈ (e, ė) given by

V̈ = −2k1e1ė1 −
2k3

k2

sin e3 cos e3ė3 − 2e4ė4 − 2e4ė4

is also bounded.

Since V is a nonincreasing function that converges to some constant value. Barbalat’s Lemma shows that V̇ → 0 as

t→ ∞. Thus, from (24), we know e1, e3, e4 and e5 tend to zero as t→ ∞. This conclusion could have also been derived

using LaSalle’s invariance principle (Khalil (2001)).

It now remains to show that e2 also converges to zero. From (14) and (15) we have

ė3 = ωr − ω = −vrK2e2 −K3 sin e3 (25)

and

ë3 = −vrK2ė2 −K3 cos e3ė3

Thus ë is bounded since e and ė are both bounded. Barbalatt’s Lemma shows that ė3 → 0 as t → ∞. Since e3 → 0,

we have that vre2 → 0. If vr does not go to zero as t → ∞, then e2 → 0 as t → ∞. Thus, the equilibrium e = 0 is

asymptotically stable.

Theorem 1 If we choose the control inputs as (9) and the parameter update rule as (23) for the dynamic model (7)-(8) of

the mobile robot with unknown slip parameter i, the equilibrium e = (ec, ed)
T is asymptotically stable. Thus, the robot

configuration q asymptotically converge to the reference configuration qr.
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4 NUMERICAL RESULTS

This section shows the effectiveness of the proposed adaptive tracking controllers presented in the previous sections.

The numerical simulations were performed using MATLAB.

The physical parameters for the model, taken from Zhou et al. (2007), are given by b = 0.65 m, r = 0.35 m,

m = 0.80 kg and I = 0.0608 kg.m2. The total time of the simulation is chosen as t = 80 s. The control parameters of the

controller are chosen as k1 = 6, k2 = 8, k3 = 6 and k4 = 10, and the parameter of the adaptive rule is chosen as γ = 10.

The initial conditions are taken as qr(0) = (0, 0, 0)T , ξ(0) = (0, 0)T and â(0) = 1. Two reference trajectories are used.

First, a linear trajectory generated by the reference velocity vr = 0.5 m/s and ωr = 0 rad/s. Second, a circular trajectory

generated by the reference velocity vr = 0.5 m/s and ωr = 0.3 rad/s. The initial conditions of the robot for the linear and

circular trajectory are respectively given by q(0) = (0,−1, π/8)T and q(0) = (0, 1, π/6)T . In order to demonstrate the

tracking performance, the slip parameter changes from i = 0 to i = 0.25 during the time period 30 s ≤ t ≤ 60 s.

Figure 2 shows the tracking error e in the fixed frame F1 for the linear reference trajectory. Note that the posture error

ec and the velocity error ed converge to zero. At the time instant t = 30 s and t = 60 s, these errors increase due to the

step change in the slip parameter.
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Figure 2. The posture error and velocity error for the linear reference trajectory.

Figure 3 shows the results for the linear reference trajectory in the inertial frame. The red solid line stands for the

reference trajectory, while the blue circles stands for the robot trajectory.
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Figure 3. Results for the linear reference trajectory.

Figure 4 shows the estimate â of the slip parameter for the linear reference trajectory. The red dashed line represents

the true value of the slip parameter and the blue solid line is the estimated value. For the time period 30 s ≤ t ≤ 60 s the

value of the slip parameter is a = 4/3 which correspond to the slip rate i = 0.25. The value a = 1 means that the slip

rate is zero.

Figure 5 shows the tracking error e for the circular reference trajectory. Note that the posture error and velocity error

converge to zero.
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Figure 4. Estimated parameter â for the linear reference trajectory.
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Figure 5. The posture errors and velocities errors for the circular reference trajectory.

Figure 6 shows the results for the circular reference trajectory in the inertial frame. The red solid line stands for the

reference trajectory, while the blue circles stands for the robot trajectory.
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Figure 6. Results for the circular reference trajectory.

Figure 7 shows the estimate â of the slip parameter for the circular reference trajectory. The red dashed line represents

the real value of the slip parameter and the blue solid line is the estimated value.
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Figure 7. Estimated parameter â for a circular reference trajectory.

5 CONCLUSIONS

We have considered in this work the tracking control problem of a nonholonomic mobile robot in the presence of

an unknown longitudinal slip parameter. A kinematic model containing the slip parameter was proposed. Neglecting the

slip parameter, a preliminary velocity controller was designed for the kinematic model in order to enforce the tracking

error to asymptotically converge to zero. Then, a backstepping control approach was used to design the torque needed to

assure that the velocities of the mobile robot follows the desired velocity, generated by the previous velocity controller.

Including the slip parameter in the kinematic model, an update rule was designed such that the estimated slip parameter

converges to the true value for the mobile robot. Asymptotic stability of the global closed-loop system was guaranteed

using an appropriate Lyapunov function. Numerical results showed that the performance of the proposed adaptive control

was effective.

6 ACKNOWLEDGMENTS

The authors are supported through grants from CAPES Proc. 1755/2008 and FAPESP Proc. 09/03304-5.

7 REFERENCES

d’Andréa Novel, B., Bastin, G. and Campion, G., 1995. “Control of nonholonomic wheeled mobile robots by state

feedback linearization”. International Journal of Robotics Research, Vol. 14, No. 6, pp. 543–559.

Eghtesada, M. and Necsulescub, D.S., 2006. “Study of the internal dynamics of an autonomous mobile robot”. Robotics

and Autonomous Systems, Vol. 54, No. 4, pp. 342–349.

Fierro, R. and Lewis, F.L., 1997. “Control of a nonholonomic mobile robot: Backstepping kinematics into dynamics”.

Journal of Robotic Systems, Vol. 14, No. 3, pp. 149–163.

Fukao, T., Nakagawa, H. and Adachi, N., 2000. “Adaptive tracking control of a nonholonomic mobile robot”. IEEE

Transactions on Robotics and Automation, Vol. 16, No. 5, pp. 609–615.

Gonzales, R., Fiacchini, M., Alamo, T., Gusman, J.L. and Rodriguez, F., 2009. “Adaptive control for a mobile robot under

slip conditions using LMI-based approach”. In Proceedings of the European Control Conference. Budapest, Hungary,

pp. 1251–1256.

Greenwood, D.T., 2003. Advanced Dynamics. Cambridge University Press, Cambridge, UK.

Ju, G., Wu, Y. and Sun, W., 2009. “Adaptive output feedback asymptotic stabilization of nonholonomic systems with

uncertainties”. Nonlinear Analysis, Vol. 7, No. 1, pp. 5106–5117.

Khalil, H.K., 2001. Nonlinear Systems. Prentice-Hall, Upper Saddle River, NJ, USA.

Li, W. and Slotine, J.J.E., 1991. Applied Nonlinear Control. Prentice-Hall, Englewood Cliffs, NJ, USA.

Martins, F.N., Celeste, W.C., Carelli, R., Sarcinelli-Filho, M. and Bastos-Filho, T.F., 2008. “An adaptive dynamic con-

troller for autonomous mobile robot trajectory tracking”. Control Engineering Practice, Vol. 16, No. 11, pp. 1354–

1363.

Mnif, F. and Touati, F., 2005. “An adaptive control scheme for nonholonomic mobile robot with parametric uncertainty”.

International Journal of Advanced Robotic Systems, Vol. 2, No. 1, pp. 59–63.

Nourbakhsh, I.R. and Siegwart, R., 2004. Introduction of Autonomous Mobile Robots. The MIT Press, London, UK.

Oriolo, G., Luca, A.D. and Vendittelli, M., 2002. “WMR control via dynamic feedback linearization: Design, imple-



VI Congresso Nacional de Engenharia Mecânica, 18 a 21 de Agosto 2010, Campina Grande - Paraíba

mentation, and experimental validation”. IEEE Transactions on Control Systems Technology, Vol. 10, No. 6, pp.

835–852.

Sidek, N. and Sarkar, N., 2008. “Dynamic modeling and control of nonholonomic mobile robot with lateral slip”. In

Proceedings of the 7th WSEAS International Conference on Signal Processing, Robotics and Automation. Cambridge,

UK, pp. 66–74.

Wang, D. and Low, C.B., 2008. “Modeling and analysis of skidding and slipping in wheeled mobile robots: Control

design perspective”. IEEE Transactions on Robotics, Vol. 24, No. 3, pp. 676–687.

Wu, J., Xu, G. and Yin, Z., 2009. “Robust adaptive control for a nonholonomic mobile robot with unknown parameters”.

Journal of Control Theory and Applications, Vol. 7, No. 2, pp. 212–218.

Yang, J.M. and Kim, J.H., 1999. “Sliding mode control for trajectory tracking of nonholonomic wheeled mobile robots”.

IEEE Transactions on Robotics and Automation, Vol. 15, No. 3, pp. 578–587.

Zhou, B. and Han, J., 2008. “Dynamic feedback tracking control of tracked mobile robots with estimated slipping

parameters”. In Proceedings of the IEEE World Congress on Computational Intelligence. pp. 1991–1996.

Zhou, B., Peng, Y. and Han, J., 2007. “UKF based estimation and tracking control of nonholonomic mobile robots with

slipping”. In Proceedings of the IEEE International Conference on Robotics and Biomimetics. Sanya, China, pp.

2058–2063.

8 COPYRIGHT

The authors are the only responsible for the printed material included in this paper.


