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Abstract. Numerical simulations were realized using a computer code developed to solve the system of Reynolds 

Averaged Navier-Stokes equations that can model the motion of a individual Taylor bubble propagating in vertical 

column in stagnant liquid and upward liquid flow. The domain was discretized in a structured-grid context and several 

refinements could be made. The finite volume method was used for the discredited system of differential equation. 

Initially, the velocity distribuition far ahead of the bubble was simulated in stagnant liquid and results  were obtained 

for various distances ahead of bubble. The solutions were compared with experimental data available in literature. 

One of the cases was used to assess the influence of numerical parameters as mesh refinement. At last,  the velocity 

profiles in front of a bubble in upward flowing liquid at various distances from the bubble tip were simulated and the 

solutions for the axial and radial velocity components and the variation of the axial velocity along the pipe axis were 

compared with experimental data. 
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1. INTRODUCTION 

 

The use of computational tools in simulations of fluid flow and heat transfer known as Computational Fluid 

Dynamics (CFD) has reduced the projects that use experimental apparatus in real physical situations. The growing 

capacity of processing and storage of computers allow a more detailed modeling of the problems and the use of more 

refined meshes in recent years. 

In the oil industry, two-phase gas-liquid flow in pipes often leads to intermittent flow or slug flow (Decarre and 

Liné, 2006). Slug flow is one of gas-liquid flow regimes occurring inside pipes over a wide range of gas and liquid flow 

rates. In vertical flow, this pattern is characterized by long bubbles, also called Taylor bubbles, which almost fill the 

pipe cross-section. Gas-liquid slug flow is highly complex with an unsteady behavior (Barnea and Shemer, 2002).  

Gas-liquid slug flow is characterized by large elongated bubbles separated by liquid slugs that may be aerated by 

small dispersed bubbles (Barnea and Shemer, 2002). This type of flow is found in many practical applications, such as: 

gas absorption units, nuclear reactors, oil-gas pipelines, steam boilers, heat exchangers and air-lift reactors (Nogueira 

and Pinto, 2005). A detailed study of the entire flow field around a Taylor bubble is a fundamental step towards a 

reliable hydrodynamic understanding and simulation of this two-phase pattern (Nogueira and Pinto, 2006). A great 

amount of research has been devoted to the study of this two-phase flow regime (Moissis and Griffith, 1962); (Nicklin 

et. al., 1962); (Campos and Guedes de Carvalho, 1988). An extensive review of this topic is given by (Fabre and Liné, 

1992).  

The translational velocities of single elongated bubbles in slug flow were simulated for various flow rates. To model 

the slug flow we considered several simplifications. The results of the simulations were compared with the measured 

translational velocities of Taylor bubbles in continuous slug flow. 

The motion of a single elongated bubble in a vertical pipe is closely related to the movement of Taylor bubbles in 

slug flow. The translational velocity of the elongated bubble,
tU , is affect by two factors: the velocity of the liquid 

ahead of the bubble cap 
LU , and the buoyancy-induced velocity of the bubble in stagnant liquid, i.e., the drift velocity 

of the bubble, 
0U  (Polonsky and Barnea, 1999). The drift velocity is obtained from following expression: 

 

 
0U k gD=  

 

where measurements show that the value of k is in the range of 0.33-0.36 (Nicklin et al., 1962). 

 (1) 
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For a Taylor bubble rising in a moving liquid the translational velocity of the bubble is a superposition of its rise 

velocity in stagnant liquid 
0U  and the contribution due to the mean liquid velocity 

LU : 

 

0t LU CU U= +  

 

The value of the factor C in Eq. (2) depends on the velocity profile in the liquid ahead of the bubble, and can be 

seen as the ratio of the maximum to the mean velocity in the profile. Hence, for turbulent flows, 1.2C ≅ , while for 

laminar pipe flows, 2C ≅  (Nicklin et al., 1962). 

The Fig. (1) shows a sequence of images of a gas-liquid slug flow taken with a camera fast. 

 

 
 

Figure 1. Images of a gas-liquid slug flow. Courtesy Two Phase Flow Group/FEM/UNICAMP. 

 

 

2. THEORETICAL FORMULATION 

 

The fundamental equations of fluid dynamics are:  

1. Conservation of mass  

2. Conservation of momentum  

3. Conservation of energy 

Formulations based on non-conservative partial differential equations can lead to numerical difficulties in situations 

where the coefficients may be discontinuous. Therefore, you must develop the partial differential equations as 

conservative - or divergent - which has the property that the coefficients are all constant or, if variable, its derivatives do 

not appear in the equation (Anderson, 1984). 

 

 

2.1 Reynolds Equations for turbulent flow 

 

Although the Navier-Stokes equations model all the physics of the problem to be studied, capture all scales of 

turbulence that occur in the flow would need computational mesh so fine that would make the numerical solution 

prohibitive. What is usually done is leave the details and focus on the average values of properties. The result of this 

process is a system of equations known as Reynolds-averaged Navier–Stokes (RANS) equations (Anderson, 1995). 

You can replace each variable by its two parcels in the Navier-Stokes equations and taking the mean of each 

equation, the resulting system is the Reynolds-averaged Navier–Stokes equations. 

Disregarding generating heat and field forces, the conservative form of Navier-Stokes equations using Einstein 

indicial notation can be written as: 

 

Continuity equation 

 

 (2) 
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Energy equation 
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Compared to the Navier-Stokes equations in the original form, the new terms that appear, are the influence of 

turbulent fluctuations on the mean flow.  

Therefore, it is necessary to shape the new terms to close the system of equations. Most models of turbulence based 

on the concept of effective viscosity of Boussinesq. The fundamental idea is to add to the molecular viscosity a 

coefficient of turbulent viscosity as follows: 

 

l tµ µ µ= +                                                          

 

It is assumed that the terms of Reynolds stress can be related to the flow medium in the same way that the tensor of 

viscous stress is related to the rate of deformation of a Newtonian fluid. You can then write the following relationship  
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Similarly, adds to the molecular thermal conductivity a coefficient of turbulent thermal conductivity,  

 

l tk k k= +                                                               

 

The turbulent thermal conductivity, kt , is related to the turbulent viscosity, by the relationship:  

 

Pr
p t

t

t

c

k

µ
=  

 

Where Prt is the turbulent Prandtl number. The turbulent viscosity, tµ , and turbulent thermal conductivity,
t

k , are 

not properties of the fluid, unlike the molecular viscosity and thermal conductivity. Dependence of tµ e tk  on and the 

flow is the key difficult to model the turbulence. Introducing the hypothesis of Boussinesq, the equations (3), (4) and (5) 

can be written in terms of average quantities: 
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And the tensor of viscous stresses and the vector of heat flux are now given by: 

(11) 

(12) 

(10) 

  (6) 

  (7) 

  (9) 

 (3) 

  (5) 

  (4) 

 (8) 
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2.2 Vector form of equations 

 

Before applying a finite volume algorithm to the fluids dynamics equations it is convenient to write the equations in 

a compact vector form. Therefore, the Reynolds-averaged Navier–Stokes (RANS) equations, in the conservative form, 

in two-dimensional Cartesian coordinates, can be written in the following way:  

 

0
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Where Q is the vector of conserved variables and E and F are the vectors of flow in the directions x and y, 

respectively, given by: 
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It is usual to split the flow vector in term of inviscid and viscous parts as follows: 

 

e vE E E= −      and   
e v

F F F= −  

 

Where the subscript e represents the inviscid components for the Euler equations and the subscript v represents 

viscous components to be used in the Navier-Stokes equations. 

 
3. NUMERICAL IMPLEMENTATION 

 

To obtain the discretization equations from the partial differential equations system, the finite volume method uses 

the control volume formulation.  

We define the vector P
r

 as: 

 

x yP Ei Fi= +
r r r

                                     

 

Where E and F are the flow vectors defined by equation (16), 
x

i
r

 and yi
r

are the unit Cartesian vectors. The equation 

(15) can then be written as: 
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Integrating the equation (19) for all unit control volumes we obtain: 
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(14) 

(13) 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
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Where 

,i jV  is the volume of a cell and 
,i jS  is the corresponding control volume surface. 

3.1 Boundary Conditions 

 
One of the most important tasks of a numerical simulation is the correct implementation of the boundary conditions. 

Basically, we can define four types of boundaries for the flow which we resolve in this work: solid wall in tube, inlet, 

outlet and symmetrical boundaries. As it is a two-dimensional case, four conditions at each boundary are necessary to 

resolve the problem. 

 
3.2 Turbulence model of two equations κκκκ-εεεε    

 
The κ-ε turbulence model focuses on the mechanisms that affect the turbulent kinetic energy. The standard model 

(Launder and Spalding, 1974) uses the following transport equations for κ and ε: 
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The equations contain five adjustable constants. The standard κ-ε model employs the following values for the 

constants for a wide range of turbulent flows: 

 

0.09C
µ

=     1.00
k

σ =     1.30σε =     1.44
1

C ε =     1.92
2

C ε =  

         
 

4. RESULTS 

 

4.1 Flow field in front of a rising bubble 

 

The problem was solved using a two-dimensional structured mesh containing 180x500 points in the radial and axial 

directions, respectively. The initial conditions were considered the values of the properties defined as: 

 
2= 101325 N/mp    

3= 998,23 kg/mρ     U = 0.9 cm/s
L

     25D mm=     4L m=  

 
The boundary condition in wall of the pipe is the condition of non-slipping in the case of the Navier-Stokes 

formulation. In Fig. (2) a schematic design shows the calculation domain and the boundary conditions. The Fig. (2a) 

represents the slug flow where the bubble rises with velocity
tU . The Fig. (2b) shows the condition for the numerical 

simulation where the bubble is stopped and the wall moves with velocity
tU . 

 

(21) 

(22) 
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Figure 2. Schematic design of a Taylor bubble rising. (a) physical problem (b) simulation. 

 

The translational velocity of the Taylor bubble 
tU can be measured from the displacement of the bubble nose. The 

drift velocity 
0U can be determined from the measured translational velocity in stagnant liquid in the limit of short 

bubbles, where the effect of compressibility vanishes (Polansky and Barnea, 1999). This value is found to be 

0 17.4 /U cm s= , corresponding to 0.351k = . 

The results are compared with experimental data available in Polonsky and Barnea (1999) and showed good 

agreement. In Fig. (3) are showed the axial velocity profiles at various distances ahead of a 5D long bubble in the pipe 

cross-section for the upward liquid velocity of U = 0.9 cm/s
L

. The red lines represent the results obtained with the 

numerical simulation and the black lines represent the results presented by Polonsky and Barnea. 

  

 
Figure 3. Axial velocity profiles at various distances ahead of a 5D long bubble, U = 0.9 cm/s

L
. 
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4.2 Velocity components 

 
 The velocity profiles in front of a 4D bubble in stagnant liquid at various distances from the bubble tip are showed 

in Fig. (4) and Fig. (5). In Fig. (4) is plotted the axial velocity component and the results are compared with the 

experimental results of  Polonsky and Barnea (1999). Again, the results of numerical simulation are very close to the 

experimental data available. 
 

 
Figure 4. Axial velocity component. 

 
The radial velocity components are showed in Fig. (5) and they also are in good agreement with the experimental 

data obtained by Polonsky and Barnea (1999). 

 

 
 

Figure 5. Radial velocity component. 
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4.3 Variation of the axial velocity along the pipe axis 

 

 The results of numerical simulation using the finite volume method for the variation of the axial velocity along 

the pipe axis in upward liquid flow are showed in Fig. (6) and also are in good agreement with the experimental data 

obtained by Polonsky and Barnea (1999). 

  

 

 
 

Figure 6. Variation of the axial velocity along the pipe axis. 
 

5. CONCLUSION 

 

Numerical simulations involving the hydrodynamic parameters of a single Taylor bubble moving in a vertical pipe 

in stagnant flow and upward liquid flow were performed. The velocity field in front of a rising bubble, as well as the 

axial and radial velocity components and the variation of the axial velocity along the pipe axis were simulated using the 

finite volume method. The solution were compared with experimental data and presenting good agreement. Gas-liquid 

slug flow is complex and has high costs. Numerical simulations have reduces the steps in projects which use 

experimental apparatus in real physical situations.  

 

6. REFERENCIES 

 

Anderson, D. A.,  Tannehill, J. C.,  Pletcher, R. H.,1984, Computational fluid mechanics and heat transfer,  New York: 

McGraw-Hill.    

Anderson Jr., J. D, 1995, Computational fluid dynamics: the basics with applications, New York: McGraw-Hill. 

Campos, J. B. L. M., Guedes de Carvalho, J. R. F., 1988, “An experimental study of the wake of gás slugs rising in 

liquids, Journal of Fluid Mechanics 196, 27-37. 

Fabre, J. Liné, A., 1992, “Modeling of two-phase slug flow”. Annual Review of Fluid Mechanics 24, 21-46. 

Guet, S., Decarre, S., Henriot, V., Liné, A., 2006, “Void fraction in vertical gás-liquid slug flow: Influence of liquid 

slug content”, Chemical Engineering Science 61, 7336-7350. 

Launder, B.E., Spalding, D.B., 1974, "The numerical computation of turbulent flow", Comp. Mech. in Appl. Mech. and 

Eng, Vol. 3 pp.269.  

Moissis, R., Griffith, P., 1962, “Entrance effects in a two-phase slug flow”, Journal of Heat Transfer 84, 29-39. 

Nicklin, D. J., Wilkes, J. O., Davidson, J. F., 1962, “Two-phase flow in vertical tubes”, Transactions of the Institution 

of Chemical Engineers, 4061-4068. 

Nogueira, S., Riethmuler, M. L., Campos, J. B. L. M., Pinto, A. M. F. R., 2005, “Flow in the nose region and annular 

filma round a Taylor bubble rising through vertical columns of stagnant and flowing Newtonian liquids”, Chemical 

Engineering Science 61, 845-857. 

Nogueira, S., Riethmuler, M. L., Campos, J. B. L. M., Pinto, A. M. F. R., 2006, “Flow patterns in the wake of a Taylor 

bubble rising through vertical columns of stagnant and flowing Newtonian liquids: An experimental study”, Chemical 

Engineering Science 61, 7199-7212. 



V I  C o n gr es s o  N a c i o n a l  d e  E n g e n har i a  M e c â n i c a ,  18  a  2 1  de  A g o s t o  2 0 10 ,  C am pi n a  G r a n d e  -  P ar a í b a  

 
Polonsky, S., Shemer, L, Barnea, D., 1999, “The relation between the Taylor bubble motion and the velocity field ahead 

of it”, International Journal Multiphase Flow 25, 957-975. 

Van Hout, R., Barnea, D., Shemer, L., 2002, “Translational velocities of elongated bubbles in continuous slug flow”, 

International Journal Multiphase Flow 28, 1333-1350. 

 

7. RESPONSIBILITY NOTICE 

 

The authors are the only responsible for the printed material included in this paper. 

 

 

 


