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Abstract: Chaos may be exploited in order to design dynamical systems that may quickly react to some new situation, 

changing conditions and their response. In this regard, the idea that chaotic behavior may be controlled by small 

perturbations allows this kind of behavior to be desirable in different applications. Chaos control may be understood 

as a two stage technique: the first one is known as the learning stage where the unstable periodic orbits (UPOs) 

embedded in chaotic attractor are identified and system characteristics are evaluated; after that, the control stage 

stabilizes desired UPOs. This paper presents an overview of chaos control methods classified as follows: OGY 

methods – that includes discrete and semi-continuous approaches; multiparameter methods – that also includes 

discrete and semi-continuous approaches; and time-delayed feedback methods that are continuous approaches. These 

methods are employed in order to stabilize some desired UPOs establishing a comparative analysis of all methods. 

Essentially, a control rule is of concern and each controller needs to follow this rule in the presence of observed noise. 

The main goal is to establish a comparative analysis of chaos control methods focusing on the control procedures 

robustness. 
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1. INTRODUCTION 
 

Nonlinearities are responsible for a great variety of possibilities in natural systems. Chaos is one of these 

possibilities being related to an intrinsic richness. A geometrical form to understand chaos is related to a transformation 

known as Smale horseshoe that establishes a sequence of contraction-expansion-folding which causes the existence of 

an infinity number of unstable periodic orbits (UPOs) embedded in a chaotic attractor. This set of UPO constitutes the 

essential structure of chaos. Besides, chaotic behavior has other important aspects as sensitive dependence to initial 

conditions and ergodicity. The idea that chaotic behavior may be controlled by small perturbations applied in some 

system parameters allows this kind of behavior to be desirable in different applications.  

In brief, chaos control methods may be classified as discrete and continuous methods. Semi-continuous method is a 

class of discrete method that lies between discrete and continuous method. The pioneer work of Ott et al. (1990) 

introduced the basic idea of chaos control proposing the discrete OGY method. Afterwards, Hübinger et al. (1994) 

proposed a variation of the OGY technique considering semi-continuous actuations in order to improve the original 

method capacity to stabilize unstable orbits. Pyragas (1992) proposed a continuous method that stabilizes UPOs by a 

feedback perturbation proportional to the difference between the present and a delayed state of the system.  

This article deals with a comparative analysis of chaos control methods that are classified as follows: OGY methods 

– that includes discrete and semi-continuous approaches (Ott et al., 1990; Hübinger et al., 1994); multiparameter 

methods – that also includes discrete and semi-continuous approaches (De Paula et al., 2008, 2009a); and time-delayed 

feedback methods that are continuous approaches (Pyragas, 1992; Socolar et al., 1994). 

Many research efforts were presented in literature in order to improve the originals chaos control techniques and 

there are numerous review papers concerning these procedures. Andrievskii & Fradkov (2003), Andrievskii & Fradkov 

(2004), Fradkov et al. (2006) and Savi et al. (2006) discussed several methods for controlling chaotic systems.  

Despite the numerous review papers concerning the chaos control, there is a lack of reports that present a comparative 

analysis of the control strategies that is the main goal of this contribution. Moreover, noise contamination is 

unavoidable in experimental data acquisition and, therefore, it is important to evaluate its effect on control strategies. In 

this paper, the capability of the chaos control methods to stabilize desired UPOs in the presence of observed noise is 

analyzed, presenting a comparative analysis of methods performance focusing on control procedures robustness. A 
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specific dynamical system is of concern and all signals are generated by numerical integration of a mathematical model, 

using experimentally identified parameters. In order to consider a system with high instability, a nonlinear pendulum 

treated in other references is considered (De Paula & Savi, 2009a,b; Pereira-Pinto et al., 2004). Results show the 

performance of each method to stabilize desired orbits exploring some limitations of its application considering noisy 

time series. Basically, it is considered an observed noise, simulating noise in experimental data due to instrumentation 

apparatus and, therefore, noise does not have influence in system dynamics. 

The paper is organized as follows. Initially, a brief introduction of chaos control methods is presented. Afterwards, 

a comparative study is carried out by defining a control rule that should be followed by each controller considering 

noisy time series. 

 

2. CHAOS CONTROL METHODS 
 

The control of chaos can be treated as a two-stage process. The first stage is called learning stage where it is 

performed the identification of UPOs and system parameters necessary for control purposes. A good alternative for the 

UPO identification is the close return method (Auerbach et al., 1987). This identification is not related to the knowledge 

of the system dynamics details. The estimation of system parameters is done in different ways for discrete, semi-

continuous and continuous methods. After the learning stage, the second stage starts promoting the UPO stabilization. 

This section considers an overview of the chaos control methods, classified as follows: OGY methods – that 

includes discrete and semi-continuous approaches (Ott et al., 1990; Hübinger et al., 1994); multiparameter methods – 

that also includes discrete and semi-continuous approaches (De Paula & Savi, 2008, 2009a); and time-delayed feedback 

methods that are continuous approaches (Pyragas, 1992; Socolar et al., 1994). 

 

2.1 OGY Method 

 
The OGY method (Ott et al., 1990) is described by considering a discrete system of the form of a map 

),(1 nnn
pF ξξ =+ , where p ℜ∈  is an accessible parameter for control. This is equivalent to a parameter dependent map 

associated with a general surface, usually a Poincaré section. Let ),( 0
1

pF
n
C

n
C ξξ =+  denote the unstable fixed point on 

this section corresponding to an unstable periodic orbit in the chaotic attractor that one wants to stabilize. Basically, the 

control idea is to monitor the system dynamics until the neighborhood of this point is reached. When this happens, a 

proper small change in the parameter p causes the next state ξ n+1
 to fall into the stable direction of the fixed point. In 

order to find the proper variation in the control parameter, δp, it is considered a linearized version of the dynamical 

system in the neighborhood of the equilibrium point given by Eq.(1). The linearization has a homeomorphism with the 

nonlinear problem that is assured by the Hartman-Grobman theorem (Savi, 2006).  
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Korte et al. (1995) established the control target as being the adjustment of n
pδ  such that the direction 1+n

sv  on the 

map n+1 is obtained, resulting in a maximal shrinking on map n+2. Therefore, it demands 11 ++ = n
s

n vαδξ , where 

ℜ∈α . Hence: 

 
1+=+ n

s
nnnn vpwJ αδδξ  (3) 

 

that is a relation from which α and n
pδ  can be conveniently chosen.  
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The OGY method can be employed even in situations where a mathematical model is not available. Under this 

situation, all parameters can be extracted from time series analysis. The Jacobian J
 n

and the sensitivity vector w
 n

 can be 

estimated from a time series using a least-square fit method (Auerbach et al., 1987; Otani & Jones, 1997). 

Otani & Jones (1997) presented some important aspects of the OGY method. As positive points, they mentioned the 

use of small perturbations for stabilization, the flexibility due to chaos, independence from equations of motion, high 

computational efficiency, and robustness due to parameter uncertainties. As drawbacks, the authors mentioned the 

difficulty to stabilize either orbits with high periodicity or systems with high instability, and the necessity to wait the 

system to visit the neighborhood of some UPO. 

An alternative to deal with some of the OGY drawbacks is the use of as many control stations as it is necessary to 

stabilize some orbits. This is the essential point related to semi-continuous method.  

 

2.1.1 Semi-continuous Method 

 
The semi-continuous method (SC) lies between the continuous and the discrete time control because one can 

introduce as many intermediate Poincaré sections, viewed as control stations, as it is necessary to achieve stabilization 

of a desired UPO (Hübinger et al., 1994). Therefore, the SC method is based on measuring transition maps of the 

system. These maps relate the state of the system in one Poincaré section to the next. 

In order to use N control stations per forcing period T, one introduces N equally spaced successive Poincaré 

sections )1(,...,0, −= NnnΣ . Let n
n
C Σ∈ξ  be the intersections of the UPO with nΣ and F  be the mapping from one 

control station nΣ  to the next one 1+Σn .  

 

2.2 Multiparameter Method 

 
The multiparameter chaos control method (MP) is based on the OGY approach and considers Np different control 

parameters, ip  ( pNi ,...,1= ). Moreover, only one of these control parameters actuates in each control station (De Paula 

& Savi, 2008, 2009a). Under this assumption, the map F  that establishes the relation of the system behavior between 

the control stations nΣ  and 1+Σn , depends on all control parameters. Although only one parameter actuates in each 

section, it is considered the influence of all control parameters based on their positions in station nΣ . On this basis,  
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where n
P  is a vector with all control parameters. By using a first order Taylor expansion, one obtains the linear 

behavior of the map F  in the neighborhood of the control point n
Cξ  and around the control parameter reference 

position, 0P , is defined by.  
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ξ  is the sensitivity matrix 

which each column is related to a control parameter. In order to evaluate the influence of all parameters actuation, it is 

assumed that the system response to all parameters perturbation is given by a linear combination of the system 

responses when each parameter actuates isolated and the others are fixed at their reference value. Therefore,  
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can be understood considering that each parameter influence is related to a vector with 

components )( 0i
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i
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i
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n
ii ppWpWq −== δ , and the general perturbation is given by: 
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Moreover, by assuming that only one parameter actuates in each control station it is possible to define active 

parameters, represented by subscript a, 
n
a

n
a

n
a pBP δδ =  (actuate in station nΣ ), and passive parameters, represented by 
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subscript p, n
p

n
p

n
p pBP δδ =  (do not actuate in station nΣ ). At this point, it is assumed a weighting matrix for active 

parameter, n
aB , and other for passive parameters, 

n
pB . Therefore,  

 
n
p
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Now, it is necessary to align the vector 
1+nδξ  with the stable direction 1+n

sν : 
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where ℜ∈α  needs to be satisfied as follows: 
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Therefore, once the unknown variables are α  and the non-vanishing term of the vector n
aPδ , one obtains the 

following system: 
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where n
aiPδ  is related to the non-vanishing element of the vector n

aPδ , that consists in the active parameter in nΣ , and 

n
iW  correspond to the sensitivity matrix column related to this active parameter. The solution of this system furnishes 

the necessary values for the system stabilization: α  and n
aiPδ . The real perturbation is given by n

ai
n

ai
n
ai Pp βδδ /= .  

A particular case of this control procedure has uncoupled control parameters meaning that each parameter returns to 

the reference value when it becomes passive. Moreover, since there is only one active parameter in each control station, 

the system response to parameter perturbation is the same as when it actuates alone. Under this assumption, passive 

influence vanishes and active vector is weighted by 1, which is represented by: 

 

0=n
pB  and IB n

a =  (12) 

 

where I is the identity matrix. 

Therefore, the map F  is just a function of the active parameters, ),(1 n
a

nn PF ξξ =+ , and the linear behavior of the 

map F  in the neighborhood of the control point n
Cξ  and around the control parameter reference positions, 0P , is now 

defined by:  
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where the sensitivity matrix nW  is the same of the previous case. Moreover, since IBn
a = , it follows that n

a
n

a pP δδ =  , 

thus the value of 
n

aPδ  corresponds to the real perturbation necessary to stabilize the system. In order to align the vector 

1+nδξ  with the stable direction, the following system is obtained: 
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The difference between the multiparameter method (MP) (De Paula & Savi, 2008) and the semi-continuous 

multiparameter method (SC-MP) (De Paula & Savi, 2009a) is that the first considers only one control station per 

forcing period while the other considers as many control stations as necessary to stabilize the system per forcing period. 

Therefore, the SC-MP is the general case that can represent the MP when only one control station per period is of 

concern. In the same way, the OGY can be seen as a particular case when only one control station and only one control 

parameter are considered.  
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2.3. Time-delayed Feedback Methods 

 

Continuous methods for chaos control were first proposed by Pyragas (1992) and are based on continuous-time 

perturbations to perform chaos control. This control technique deals with a dynamical system modeled by a set of 

ordinary nonlinear differential equations as follows: 

 

)(),()( tBtxQtx +=&  (15) 

 

where n
Rtx ∈)(  is the state variable vector, n

RtxQ ∈),( defines the system dynamics, while n
RtB ∈)(  is associated 

with the control action.  

Socolar et al. (1994) proposed a control law named as the extended time-delayed feedback control (ETDF) 

considering the information of time-delayed states of the system represented by the following equations: 
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where nnRK ×∈  is the feedback gain matrix, 10 <≤ R , )( ττ −= tSS  and )( ττ mtxxm −= . The UPO stabilization can be 

achieved by a proper choice of R and K. Note that for any R and K, perturbation of Eq.(16) vanishes when the system is 

on the UPO since )()( txmtx =− τ  for all m if iT=τ , where iT  is the periodicity of the ith UPO.  

The controlled dynamical system consists of a set of delay differential equations (DDEs). The solution of this 

system is done by establishing an initial function )(00 txx =  over the interval )0,( τm− . This function can be estimated 

by a Taylor series expansion as proposed by Cunningham (1954): 
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Under this assumption, the following system is obtained: 
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Note that DDEs contain derivatives that depend on the solution at delayed time instants. Therefore, besides the 

special treatment that must be given for 0)( <− τmt , it is necessary to deal with time-delayed states while integrating 

the system. A fourth-order Runge-Kutta method with linear interpolation on the delayed variables is employed in this 

work for the numerical integration of the controlled dynamical system (Mensour & Longtin, 1997). 

It should be pointed out that when R = 0, the ETDF turns into the original time-delayed feedback control method 

(TDF) proposed by Pyragas (1992) where the control law is based on a feedback of the difference between the current 

and a delayed state given by: 

 

][)( xxKtB −= τ  (19) 

 

where τ  is the time delay, )(txx =  and )( ττ −= txx .  

An important difference between continuous and discrete methods is that in continuous methods it is not necessary 

to wait the system to visit the neighborhood of the desired orbit. Another particular characteristic related to the learning 

stage is that, besides the UPO identification common to all control methods, it is necessary to establish proper values of 

the control parameters, K and R, for each desired orbit. This choice is done by analyzing Lyapunov exponents of the 

UPO, establishing negative values of the largest Lyapunov exponent. After this first stage, the control stage is 

performed, where the desired UPOs are stabilized. De Paula & Savi (2009b) discussed a proper procedure to evaluate 

the largest Lyapunov exponents necessary for the controller parameters. 
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3. COMPARATIVE ANALYSIS 

 

As an application of the general chaos control methods, a system with high instability characteristic is of concern. 

A nonlinear pendulum actuated by two different control parameters is considered. The motivation of the proposed 

pendulum is an experimental set up discussed in De Paula et al. (2006) that proposed a mathematical model to describe 

the pendulum dynamical behavior. Basically, the pendulum consists of an aluminum disc with a lumped mass. An 

electric motor harmonically excites the pendulum via a string-spring device, which provides torsional stiffness to the 

system. 

The mathematical model for the pendulum dynamics describes the time evolution of the angular position, φ , 

assuming that ϖ is the forcing frequency, I is the total inertia of rotating parts, k is the spring stiffness, ζ  represents the 

viscous damping coefficient and µ  the dry friction coefficient, m is the lumped mass, a defines the position of the 

guide of the string with respect to the motor, b is the length of the excitation arm of the motor, D is the diameter of the 

metallic disc and d is the diameter of the driving pulley. The equation of motion is given by (De Paula et al., 2006): 
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where )()sin(2)cos(2)( 2
2

2
22

batlbtablbatf −−∆−−∆++=∆ ϖϖ  and ∆l1 and ∆l2 correspond to actuations. 

Numerical simulations of the pendulum dynamics are in close agreement with experimental data by assuming 

parameters used in De Paula et al. (2006): a = 1.6×10
−1

 m; b = 6.0×10
−2

 m; d = 4.8×10
−2 

m; D = 9.5×10
−2 

m; m = 

1.47×10
−2 

kg; I = 1.738×10
−4

 kg m
2
; k = 2.47 N/m; 

125 smkg10368.2 −−×=ζ ; mN10272.1 4−×=µ ; rad/s61.5=ω .  

Position and velocity time series are obtained from numerical integration of the mathematical model with 

rad/s61.5=ω , a frequency related to chaotic behavior. UPOs embedded in chaotic attractor are identified by using the 

close return method (Auerbach et al., 1987). This identification consists in the first step of the learning stage being 

common to all control methods.  

This section establishes a comparative analysis of chaos control methods that, in principle, are capable to perform 

UPO stabilization of the nonlinear pendulum. Due to system instability, the discrete OGY and OGY-MP methods don’t 

present good performance in stabilizing UPOs of the system. De Paula & Savi (2008) showed some situations where the 

OGY-MP method presents better performance than the discrete original OGY method. In this regard, the comparative 

analysis deals with only four different controllers: semi-continuous (SC), semi-continuous multiparameter (SC-MP) 

(coupled and uncoupled approaches) and extended time-delayed feedback method (ETDF).  

Let us start discussing some aspects of the learning stage. Concerning discrete and semi-continuous techniques, 

besides the UPO identification, it is necessary to evaluate the local dynamics expressed by the Jacobian matrix and the 

sensitivity vector of the transition maps in a neighborhood of the fixed points. The least−square fit method (Auerbach et 

al., 1987; Otani & Jones, 1997) is employed to estimate Jacobian matrix. After that, the SVD technique is employed for 

determining stable and unstable directions near the next fixed point. The sensitivity vectors are evaluated allowing the 

trajectories to come close to a fixed point and then perturbing the parameters by the maximum permissible value. 

Multiparameter methods need to define the sensitivity matrix where each column is evaluated by the same way of the 

sensitivity vector of the single-parameter method. The MP coupled approach needs to define proper values for 

parameters βa
 
and βp. A brute-force approach is an alternative to establish values for these parameters by increasing 

controller efficacy as described in De Paula & Savi (2009a). This approach considers βa=2.5
 
and βp=1.5. The uncoupled 

approach avoids this evaluation since βa=1
 
and βp=0. Concerning the continuous methods, the learning stage involves 

the determination of control parameters, R and K, which is done by evaluating the largest Lyapunov exponent of the 

desired UPO. The idea is to find controller parameters that are related to negative values of the maximum Lyapunov 

exponent, which means that the UPO becomes stable (De Paula & Savi, 2009b).  

After the learning stage, the stabilization stage is initiated. Discrete methods need to wait the system to visit the 

neighborhood of the control orbit, when the control procedure is turned on. Single-parameter methods are employed by 

considering the isolated perturbation performed by the parameters 1l∆  or 2l∆ . Multiparameter methods assume that the 

first control parameter actuates in odd stations while the second actuates in even stations. Continuous methods, on the 

other hand, use the first control parameter, ∆l1, to actuate over the system. Under this assumption, K is a scalar.  

 

3.1. Control Methods Performance Considering Noisy Signals 

 
Noise contamination is unavoidable in experimental data acquisition. Therefore, it is important to evaluate its effect 

on chaos control procedures. This section evaluates noise sensitivity of the chaos control techniques considered in the 

comparative analysis: SC, SC-MP, coupled and uncoupled approaches, and ETDF. In order to simulate noisy data sets, 

a white Gaussian noise is introduced in the signal, comparing results of control procedures with an ideal time series, 

free of noise. In general, noise can be expressed as follows, 
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where x represents state variables, y represents the observed response and ),( txQ  and ),( txP  are nonlinear functions. 

µd and µo are, respectively, dynamical and observed noises. Notice that µd has influence on system dynamics in contrast 

with µo. In this work, it is considered only an observed noise, simulating noise in experimental data due to 

instrumentation apparatus and, therefore, noise does not have influence in system dynamics. 

The noise level can be expressed by the standard deviation, σ, of the system probability Gaussian distribution, that 

is parameterized by the standard deviation of the clean signal, signalσ , as follows: 

 

100(%)
signal

×=
σ

σ
η  (22) 

 

At this point, the comparative analysis is of concern. A control rule is assumed in order to analyze the control 

methods performance in the presence of observed noisy. This control rule is defined in order to choose orbits that can be 

stabilized by all control methods for an ideal signal: a period-6 orbit during the first 500 periods, a period-2 from period 

500 to 1000, a period-3 from 1000 to 1500 and, finally a period-1, from period 1500 to 2000. Figure 1 presents these 

four UPOs in one of the control stations (CS) considered by SC methods, while Figure 2 shows the UPOs phase space.

  

  
Figure 1 – UPOs of the second control rule at control station #1. 

 

 
Figure 2 – Control rule UPOs. 

 

By considering signals without noise, %0=η , the four control strategies considered in the comparative analysis 

are effective to stabilize all UPOs of the control rule. In SC and SC-MP methods evaluation it is considered four control 
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stations per forcing period and maximum perturbation of mm15max1 =∆l  and mm25max2 =∆l . For all methods 

evaluation, reference positions of control parameters are mm02010 =∆=∆ ll .  

Initially, it is considered a noisy signal with %1 of amplitude. Figure 3 shows the desired trajectory, imposed by the 

control rule, and the system time evolution at control station #1 when the SC is employed considering the isolated 

actuation performed by the parameters 1l∆  and 2l∆ . Figure 4 presents the same pictures for the SC-MP, coupled and 

uncoupled approaches, while Figure 5 presents results for the ETDF. Note that for %1=η , the SC with first control 

parameter stabilizes all UPOs of the control rule, however, sometimes system trajectory escapes from the desired orbit, 

returning back later. By using the second control parameter, only two of the orbits are successfully stabilized. By using 

the SC-MP coupled approach, the second orbit of the control rule is not satisfactory stabilized. The uncoupled approach 

of the SC-MP and the ETDF successfully stabilizes all orbits. It should be highlighted, however, that the ETDF 

stabilizes a different UPO for the first orbit. The same difference happens when no noise is considered as observed by 

De Paula & Savi (2009b). 

 

 
Figure 3 - System controlled using SC at CS #1 with %1=η : (a) Parameter 1l∆ ; (b) Parameter 2l∆ . 

 
Figure 4 - System controlled using SC-MP at CS #1 with %1=η : (a) Coupled; (b) Uncoupled. 

 
Figure 5 - System controlled using ETDF at control station #1 with %1=η . 

 

A noise level of %2  is now considered. Figure 6 shows the desired trajectory imposed by the control rule and the 

system time evolution at control station #1 when the SC is employed considering the isolated actuation performed by 

the parameters ∆l1 and ∆l2. Figure 7 presents the same pictures for the SC-MP, coupled and uncoupled approaches, 

while Figure 8 presents results of the ETDF. Note that the increase in noise level makes the single-parameter SC to be 

not able to stabilize some orbits. Although the coupled SC-MP presents better results, it is noticeable that its efficacy 

decreases with the noise level increase. The uncoupled SC-MP presents better results when compared with the 
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preceding methods and the ETDF successfully stabilize all UPOs of the control rule, except for the fact that the period-6 

stabilized orbit is different from the desired one.  

Concerning the semi-continuous methods, it should be highlighted that the increase of control stations is a useful 

procedure in order to avoid the effect of noise, however, the effectiveness of this procedure is limited by the time 

response of the system (Pereira-Pinto et al., 2004). Figure 9 presents results of the SC method with parameter ∆l1 

considering four and six control stations with η=2%. 

 
Figure 6 - System controlled using SC at CS #1 with %2=η : (a) Parameter 1l∆ ; (b) Parameter 2l∆ . 

 
Figure 7 - System controlled using SC-MP at CS #1 with %2=η : (a) Coupled; (b) Uncoupled. 

 
Figure 8 - System controlled using ETDF at control station #1 with %2=η . 

 
Although the increase of control stations can promote a better performance related to orbit stabilization, there are 

situations where this increase causes the increase of uncertainty that could appear as a consequence of the determination 

of controller parameters. 
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Figure 9 – System controlled using SC at CS #1 with %2=η  and parameter 1l∆ : (a) Four CS’s; (b) Six CS’s. 

 

 For noise levels greater than 2% none of the semi-continuous methods presented good results in stabilizing the 

nonlinear pendulum. The ETDF successfully stabilized orbits of the control rules for noise levels up to %5=η . 

 

4. CONCLUSIONS 
 

This paper presents a comparative analysis of chaos control methods performances. Initially, it is presented an 

overview of chaos control methods classified as follows: OGY methods – that includes discrete and semi-continuous 

approaches; multiparameter methods – that also includes discrete and semi-continuous approaches; and time-delayed 

feedback methods that are continuous approaches. The learning stage is the same for all discrete methods, where system 

parameters are identified from time series and it is not necessary to know the system dynamics. On the other hand, the 

learning stage of the continuous methods implies the determination of control parameters from estimating the maximum 

Lyapunov exponent which imposes the knowledge of the mathematical model. As an application of the general chaos 

control methods a nonlinear pendulum is of concern. Due to its high instability, the comparative analysis deals with four 

control strategies: SC; SC-MP, coupled and uncoupled approaches; and ETDF, whose are capable to perform UPOs 

stabilization of the system. It is considered a control rule where four different UPOs must be stabilized in the presence 

of observed noise. From this analysis, it is shown that continuous methods present greater robustness being associated 

with better performances, however, sometimes the ETDF stabilizes orbits different from the desired UPO. Among semi-

continuous control strategies, the uncoupled approach of the SC-MP method presents the better performance. 

 

5. ACKNOWLEDGEMENTS 

 
The authors would like to acknowledge the support of the Brazilian Research Agency (CNPq) and the State 

Research Agency (FAPERJ). 

 

6. REFERENCES 

 
Andrievskii, B. R. & Fradkov, A. L., 2003, “Control of chaos: methods and applications. I. Methods”, Automation and 

Remote Control, v. 64, n. 5, pp. 673-713. 

Andrievskii, B. R. & Fradkov, A. L., 2004, “Control of chaos: methods and applications. II. Applications”, Automation 

and Remote Control, v. 65, n. 4, pp. 505-533. 

Auerbach, D., Cvitanovic, P., Eckmann, J. -P., Gunaratne, G. & Procaccia, I., 1987, “Exploring chaotic motion through 

periodic orbits”, Physical Review Letters, v.58, n.23, pp.2387-2389. 

Cunningham, W. J., 1954, “A nonlinear differential-difference equation of growth”, Mathematics, v.40, pp.708-713. 

De Paula, A. S., Savi, M. A. & Pereira-Pinto, F. H. I., 2006, “Chaos and transient chaos in an experimental nonlinear 

pendulum”, Journal of Sound and Vibration, v.294, n.3, p.585-595. 

De Paula, A. S. & Savi, M. A., 2008, “A multiparameter chaos control method applied to maps”, Brazilian Journal of 

Physics, v.38, n.4, pp.537-543. 

De Paula, A. S. & Savi, M. A., 2009a, “A multiparameter chaos control method based on OGY approach”, Chaos, 

Solitons and Fractals, v.40, n.3, pp.1376-1390. 

De Paula, A. S. & Savi, M. A., 2009b, “Controlling chaos in a nonlinear pendulum using an extended time-delayed 

feedback control method”, Chaos, Solitons and Fractals, v.42, n.5, pp.2981-2988. 

Fradkov, A. L., Evans, R. J. & Andrievsky, B. R., 2006, “Control of chaos: methods and applications in mechanics”, 

Philosophical Transactions of the Royal Society A, v.364, pp.2279-2307. 

Grebogi, C. & Lai, Y. -C., 1997, “Controlling chaotic dynamical systems”, Systems and Control Letters, v. 31, pp.307-

312.   



V I  C o n gr es s o  N a c i o n a l  d e  E n g e n har i a  M e c â n i c a ,  18  a  2 1  de  A g o s t o  2 0 10 ,  C am pi n a  G r a n d e  -  P ar a í b a  

 
Hübinger, B., Doerner, R., Martienssen, W., Herdering, M., Pitka, R. & Dressler, U., 1994, “Controlling chaos 

experimentally in systems exhibiting large effective Lyapunov exponents”, Physical Review E, v. 50, n. 2, pp.932-

948. 

Korte, R. J. de, Schouten, J. C. & Bleek, C. M. van den, 1995, “Experimental control of a chaotic pendulum with 

unknown dynamics using delay coordinates”, Physical Review E, v. 52, n. 4, pp. 3358-3365. 

Mensour, B. & Longtin, A., 1997, “Power spectra and dynamical invariants for delay-differential and difference 

equations”, Physica D, v.113, pp.1-25. 

Otani, M. & Jones, A. J, 1997, “Guiding chaotic orbits”, Research Report. 

Ott, E., Grebogi, C. & Yorke, J. A., 1990, “Controlling chaos”, Physical Review Letters, v. 64, n. 11, pp. 1196-1199. 

Pereira-Pinto, F.H.I., Ferreira, A.M. & Savi, M.A., 2004, “Chaos control in a nonlinear pendulum using a semi-

continuous method”, Chaos, Solitons and Fractals, v.22, n.3, pp.653-668. 

Pyragas, K., 1992, “Continuous control of chaos by self-controlling feedback”, Physics Letters A, v. 170, pp. 421-428. 

Savi, M. A., 2006, “Nonlinear dynamics and chaos”, Rio de Janeiro: E-papers (in Portugueese). 

Savi, M. A., Pereira-Pinto, F. H. I. & Ferreira, A. M., 2006, “Chaos control in mechanical systems”, Shock and 

Vibration, v. 13, pp. 301-314. 

Socolar, J. E. S., Sukow, D. W. & Gauthier, D. J., 1994, “Stabilizing unstable periodic orbits in fast dynamical 

systems”, Physical Review E, v.50, n.4, pp.3245-3248. 

 

7. RESPONSIBILITY NOTICE  
 

The authors are the only responsible for the printed material included in this paper. 


