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Abstract: Literature presents numerous constitutive models that describe the phenomenological features of the 

thermomechanical behavior of shape memory alloys (SMAs). The present paper introduces a novel three-dimensional 

constitutive model that describes the martensitic phase transformations within the scope of standard generalized 

materials. The model is capable of describing the main features of the thermomechanical behavior of SMAs by 

considering four macroscopic phases associated with austenitic phase and three variants of martensite. A numerical 

procedure is proposed to deal with the nonlinearities of the model. Numerical simulations are carried out dealing with 

uniaxial and multiaxial single-point tests showing the capability of the introduced model to describe the general 

behavior of SMAs.  
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1. INTRODUCTION 

 

Shape memory alloys (SMAs) belong to the class of smart materials being used in different kinds of applications, 

see e.g. Lagoudas (2008), Paiva & Savi (2006), Machado & Savi (2003) and Kalamkarov & Kolpakov (1997). The 

remarkable properties of SMAs are associated with thermoelastic martensitic transformations that are responsible for 

different kinds of complex thermomechanical behavior of these smart materials. Besides pseudoelastic and shape 

memory effects, SMAs may demonstrate interesting behavior as internal subloops due to incomplete phase 

transformations, two-way shape memory effect, plasticity, transformation induced plasticity, rate-dependency, 

thermomechanical couplings among other interesting effects related to non-homogeneous characteristics. All these 

phenomena give a general idea about the complex thermomechanical behavior of SMAs, as discussed by Matsumoto et 

al. (1987), Shaw & Kyriakides (1995), Otsuka & Ren (1999), Gall & Sehitoglu (1999), Patoor et al. (2006), Lagoudas 

et al. (2006) and Lagoudas (2008). 

The modeling and simulation of thermomechanical behavior of SMAs is the objective of numerous research efforts. 

The macroscopic modeling is related to phenomenological features, and it relies on the continuum thermodynamics 

with internal state variables to take into account the changes in the microstructure due to phase transformation (Popov 

& Lagoudas, 2007; Paiva & Savi, 2006). Paiva & Savi (2006) and Lagoudas (2008) have presented a general overview 

of the SMA modeling, with the emphasis on the phenomenological constitutive models.  

The SMA modeling becomes even more complex when three-dimensional media is of concern. Although many 

constitutive models are developed for a three-dimensional description, their verification is difficult due to the lack of 

experimental data. Therefore, many articles in literature present three-dimensional models but only discuss results 

related to the uniaxial tests. Besides the thermomechanical modeling of SMAs, some experimental reports are of a great 

importance in order to validate the three-dimensional models. Among other efforts, one could refer to some 

experimental multiaxial tests performed in different contexts: Grabe & Bruhns (2007); McNaney et al. (2007); Manach 

& Favier (1997); Sittner et al. (1995).  

The present work proposes a three-dimensional constitutive model developed within the framework of continuum 

mechanics and generalized standard materials being built upon the classical Fremond’s model (Fremond, 1996). The 

model is inspired on the one-dimensional model that is able to describe different thermomechanical behaviors of SMAs 

in a flexible way, and its numerical simulations are in a close agreement with the experimental uniaxial tests (Savi et al., 

2002; Baêta-Neves et al., 2004; Paiva et al., 2005; Savi & Paiva, 2005; Monteiro Jr et al., 2009). Numerical simulations 

are carried out for both uniaxial and multiaxial tests considering a single point analysis that shows that the introduced 

model is able to capture the general thermomechanical behavior of SMAs.  
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2. CONSTITUTIVE EQUATIONS 

 

Modeling of SMA behavior can be done within the scope of standard generalized materials under the assumption 

that the thermodynamic state of the material can be completely defined by a finite number of state variables, see e.g. 

Lemaitre & Chaboche (1990). Under this assumption, the thermomechanical behavior can be described by the 

Helmholtz free energy density, Ψ, and the pseudo-potential of dissipation, Φ.  

Experimental studies have revealed the main aspects of the thermomechanical behavior of SMAs. Basically, there 

are two possible phases: austenite and martensite. In martensitic phase, different deformation orientations of 

crystallographic plates constitute what is known by the martensitic variants. In the case of three-dimensional medium, 

there are 24 possible martensitic variants that are arranged in 6 plate groups with 4 plate variants per group. Because the 

crystal structure of martensite is less symmetric than the austenite, only a single variant is created on the reverse 

transformation (Zhang et al., 1991; Schroeder & Wayman, 1977).  

The three-dimensional description of thermomechanical behavior of SMAs is usually inspired on one-dimensional 

models employing a limited number of martensitic variants. Motivated by one-dimensional models, the proposed model 

considers four macroscopic phases: austenite (A), the twinned martensite (M), which is stable in the absence of a stress 

field, and two other martensitic phases (M+ and M−). The definition of the Helmholtz free energy density considers 

different expressions for each one of the macroscopic phases, assuming that they are functions of strain, ijε , and 

temperature, T. 
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Here the indices M and A are related to the martensitic and austenitic phases, respectively; λ and µ are the Lamé 

coefficients; α is a scalar parameter related to the hysteresis loop; In Eq.(1), AM ΛΛ  and  are temperature functions that 

define the stress level of phase transformation; Ωij is a tensor related to the thermal expansion coefficients; 0T  is a 

reference temperature where free stress state is free of strain; finally, ρ  is the material density. Moreover,  
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where J2 is a measurement of equivalent strain given by: 
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The variable Γ can be understood as an equivalent strain field that contributes to phase transformations. Its 

definition takes into account that phase transformations may be induced either by volumetric expansion (represented by 

the first term, 3/e
kkε ) or by deviatoric effect (represented by the second term, )(sign)3/32( 2

e
kk

e
J ε ). This hypothesis 

is based on experimental observations that show that both effects induce phase transformation. It is important to 

highlight experimental torsion tests that indicate that stress-strain curves are qualitatively similar to those obtained in 

tensile tests (Jackson et al., 1972; Manach & Favier, 1997; Aguiar et al., 2010). Under this assumption, the equivalent 

field Γ may be interpreted as a phase transformation inductor that defines what kind of martensitic variant is induced. 

On the one hand, if 0≥Γ  the variant M+ is induced. On the other hand, the variant M− is induced when 0<Γ . Note 

that each variant can be induced either by volumetric or by shear effects, allowing a proper description of the three-

dimensional behavior. Moreover, it should be pointed out that, since the sign of shear strains does not appear in this 

inductor, they have a neutral influence, tending to follow the volumetric expansion influence. Besides, note that for one-

dimensional case, e
11εΓ = , reducing the model to the original one-dimensional description (Savi et al., 2002; Paiva et 

al., 2005; Aguiar et al., 2010).  
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In this moment, it is necessary to define the free energy density of the mixture, setting the volume fraction of 

martensite variants, 1β  and 2β ,  associated with detwinned martensite ( +
M  and −

M , respectively) and 3β , related to 

austenite ( A ). The fourth phase is associated with twinned martensite ( M ) and their volume fraction is 4β . 
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where ),,,( 4321 ββββΘΘ II =  is the indicator function associated with the convex set Θ  (Rockafellar, 1970) that 

establishes the phase coexistence conditions 
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From these conditions, it is possible to use 3214 1 ββββ −−−=  in order to define a free energy density in terms of 

only three volume fractions: 
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Here, the indicator function ),,( 321 βββππ II =  is related to the convex set π  defined as follows: 
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where s
1β and s

2β are the values of β1 and β2, respectively, when the phase transformation begins to take place. This is 

geometrically represented by a tetrahedron in the (β1, β2, β3)-space, shown in Fig. 1. 
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Figure 1. Tetrahedron of the constraints ππππ. 

 

Therefore, the free energy density of the mixture has the following form: 
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where MΛΛ 2=  and AM ΛΛΛ +=3 .The elastic strain is defined by establishing an additive decomposition given by: 
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where parameter 
h
ijα  is responsible for the horizontal size of the hysteresis loop is stress-strain diagram, being defined 

as follows: 
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where maxσ represents the maximum value of the stress components during a loading process. Moreover, it should be 

highlighted that 0=h
ijα  if 0max =σ . 

From the generalized standard material approach, the thermodynamical forces associated with each internal variable 

are defined as follows (Lemaitre & Chaboche, 1990): 
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Here the )(
mβ∂  represents the subdifferential with respect to βm. Note that the material parameter is given by a 

kind of rule of mixtures, being defined as follows: 
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  It is also important to observe that, 
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and that 0
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ε
. Moreover, the functions Λ and Λ3 are temperature dependent and here it is assumed a linear 

dependence as follows: 
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where TM is the temperature below which the martensitic phase becomes stable. Besides, 0L , L , AL0  and A
L  are 

parameters related to phase transformation critical stresses. Note that, based on the previous definition, the phase 

transformation stress level is constant for T < TM. 

Since klijklijijkk E εµεδλε =+ 2 , it is possible to rewrite the stress-strain relation as follows: 
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ijklijkl EEEE −+= β . In case of isotropic materials, Lamé coefficients can be expressed in terms of 

engineering constants as follows: 
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where E is the elastic modulus, G is the shear modulus and υ is the Poison ratio. 

The thermomechanical behavior of SMAs is intrinsically dissipative and therefore, it is important to establish the 

pseudo-potential of dissipation that allows the description of dissipative materials. By assuming that this potential may 

be split into mechanical and thermal parts, its mechanical part may be considered as follows: 
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where ),,( 321 βββ &&&
xx II =  is the indicator function related to the convex set χ, that provides constraints associated with 

phase transformation evolution. Physically, this indicator function establishes constraints related to internal subloops 

due to incomplete phase transformations and also to the formation of detwinned martensite (M). Hence, for 0=ijσ&  the 

convex set χ  can be written as follows:  
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Together with constraints related to internal subloops, the set (21) also expresses a constraint to eliminate both M+ 

→ M and M− → M phase transformations. In mathematical terms, this is expressed by 

0)( 31
2

1321141 =−−=−−−= βββββββββ &&&&&&&&&  or by 0)( 32
2
2321242 =−−=−−−= βββββββββ &&&&&&&&& , respectively, which 

means that when one kind of transformation occurs the other must vanish. Moreover, the discarded terms in both 

equations ( 21ββ &&− ) represent impossible transformations and, thus, are not considered. Otherwise, for a system with 

some kind of mechanical loading 0≠ijσ& : 
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Under these assumptions, and considering again the generalized standard materials approach, the thermodynamical 

fluxes are represented as (Lemaitre & Chaboche, 1990): 
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In order to contemplate different aspects of kinetics of phase transformation, parameter iη
 may assume different 

values for cases of loading or unloading behaviors: 
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These equations establish a complete set of constitutive relations, given by: 
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Nonlinearities of the formulation are treated by considering an iterative numerical procedure based on the operator 

split technique (Ortiz et al., 1983). The procedure is similar to that employed earlier for the one-dimensional media, see 

Savi et al. (2002) and Paiva et al. (2005). The procedure isolates the subdifferentials and uses the implicit Euler method 

combined with an orthogonal projection algorithm to evaluate evolution equations. Orthogonal projections assure that 

volume fractions of the martensitic variants obey the imposed constraints. In order to satisfy constraints expressed in 

Eq. (9), values of volume fractions must stay inside or on the boundary of π, the tetrahedron shown in Fig. 1.  

In order to evaluate the capability of the above introduced model to describe thermomechanical behavior of SMAs, 

numerical results from the uniaxial and multiaxial single-point tests are carried out. Specifically, uniaxial tests show 

pseudoelasticity, shape memory effect, phase transformation due to temperature variations and internal subloops due to 

incomplete phase transformations. Concerning multiaxial tests, the pure shear stress and hydrostatic tests are discussed 

showing qualitatively coherent results. Table 1 presents model parameters employed for all numerical simulations.  

 

Table 1. Model parameters. 

)(GPaEA  )(GPaEM  )(MPaα  )/( KMPaAΩ  )/( KMPaMΩ  

54 42 330 0.74 0.17 

)(0 MPaL  )(MPaL  )(0 MPaLA  )(MPaLA
 )(KTM  

0.15 41.5 0.63 185 291.4 

)(KTA  ).( sMPa
Lη  ).( sMPa

Uη  ).(3 sMPaLη  ).(3 sMPaUη  

307.5 1 2.7 1 2.7 

hα  
Aν  Mν    

0.0473 0.3 0.44   

 

 

3. NUMERICAL SIMULATIONS: UNIAXIAL TESTS 

 

In order to evaluate the capability of the proposed model to describe thermomechanical behavior of SMAs, let us 

consider uniaxial tests related to a single-point tensile behavior, assuming that 11εΓ =  and 0=ν . Initially, the 

verification of the proposed model is done by comparing numerical simulation with experimental data presented by 

Tobushi et al. (1991), which describes tensile tests on Ni-Ti wires at different temperatures such as 333 K, 353 K and 

373 K. Figure 2 presents the comparison showing a good agreement between numerical and experimental tests.   

Let us now focus our attention on the shape memory effect. The SMA specimen starts at T = 260K, a temperature 

where martensite is stable, and then is subjected to a mechanical loading. After the loading-unloading process, the 

specimen is subjected to a temperature change. Figure 3 presents the thermomechanical loading process. At the 

beginning of the process, the mechanical loading is applied at a low temperature, upon final unloading there is still 

some residual strain, which can be fully recovered by heating the sample until austenite becomes stable and cooling 

back to the test temperature. Figure 3 also presents stress-strain-temperature curve showing the complete process and 

the corresponding volume fraction evolution. Initially, the mechanical loading causes the reorientation from M to M+. 

Afterwards, the temperature change causes the phase transformation from M+ to A, which is responsible for residual 

strain recovery.  
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Figure 2. Comparison between numerical and experimental results (Tobushi et al., 1991).   

  

 
Figure 3. Shape memory effect. 

 

 

 

 



V I  C o n gr es s o  N a c i o n a l  d e  E n g e n har i a  M e c â n i c a ,  18  a  2 1  de  A g o s t o  2 0 10 ,  C am pi n a  G r a n d e  -  P ar a í b a  

 
4.  NUMERICAL SIMULATIONS: MULTIAXIAL TESTS 

  

This section deals with multiaxial tests that are used to show the capabilities of the above introduced three-

dimensional model. Initially, pure shear test is performed in order to verify the consistence of the model. Afterwards, a 

more complex loading process is of concern. 

 

4.1.  Pure Shear Test  

 

The analysis of a pure shear stress test allows us to verify the coordinate invariance by establishing a comparison 

between the pure shear state with the one with tensile and compressive stress of the same value. Therefore, the 

maximum values of the stress tensors of these two states are given by: 
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Tests are carried out at temperature T = 373K, which coincides with the temperature T0. Figure 4 shows the SMA 

response presenting the stress-strain curves and the volume fraction evolution, comparing the following curves: σ11×ε11 

and σ12×ε12. The response is a typical pseudoelastic behavior and it is important to note that curves are identical, 

confirming the system invariance.  

 
Figure 4. Pure shear test. 

 

4.2. Plane Stress Test 

 

 

 
Figure 5. Plane stress test: stress space, strain space and volume fractions. 
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At this point, an analysis of a plane stress test is of concern. The loading process is shown in Figure 5 representing a 

situation where a tensile loading is applied with a linear increase until a maximum value is reached. Afterwards, a shear 

stress is applied with a linear increase, keeping the tensile load constant. Then, similar procedure is adopted in order to 

remove both loads. Figure 5 also presents the strain space resulting from this loading process. The nonlinearity of the 

curve is clearly noticeable. Since the shear loading is applied keeping the tensile load constant, great part of the phase 

transformation is induced when shear load is applied, see volume fraction evolution. It is also important to observe that 

the positive volume fraction is induced as a consequence of the inductor characteristics ( 0≥Γ ). Figure 6 stress-strain 

curves related to this process. 

 

   
Figure 6. Plane stress test: stress-strain curves. 

 

 

5. CONCLUSIONS 
 

The present work proposes a novel three-dimensional constitutive model to describe the thermomechanical 

behavior of shape memory alloys. The phenomenological model is developed within the framework of continuum 

mechanics and the generalized standard materials. Inspired on one-dimensional models, four macroscopic phases are 

considered assuming different properties for austenitic and martensitic phases. Martensitic reorientation is defined by an 

equivalent field that includes either the volumetric expansion or the deviatoric effect. Numerical simulations are carried 

out for uniaxial and multiaxial single-point tests. Uniaxial tests represent the typical thermomechanical behavior of 

tensile tests showing pseudoelasticity and shape memory effect. Multiaxial tests are carried out in order to evaluate the 

capabilities of the introduced model to describe different thermomechanical loadings. Pure shear and plane stress tests 

are explored showing a qualitative coherence and presenting important characteristics of the model as the coordinate 

invariance.  
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