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Abstract. An analytic bi-material model, composed of two bone tissues, is proposed. An elliptic cross section is used to 

model a real medial cross section of a long bone: an external elliptic constant thickness wall is used to model the 

cortical tissue and an internal ellipse is used to model trabecular tissue. The objective of the analytic model is to 

establish an explicit relationship between applied loads and mechanical stresses generated at external surface of a 

medial cross section of a long bone. 
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1. I�TRODUCTIO�  

  

The first works in this subject done by the authors as in (Kenedi, 2008, 2007a, 2007b), also based in (Doblaré, 2004) 

and (Keyak, 2000), establishes the basis of this research in bone analytic models, using mechanics of solids to estimated 

stresses at external surface of circular medial cross section bone. With the development of research as shown in 

(Kenedi, 2009a, 2009b), the bone cross section was improved to an elliptic one. In these former works only cortical 

tissue was recognized. In this work the trabecular bone tissue is also recognized, generating a bi-material model. 

Several limiting hypotheses have to be made in order to assure viability of the proposed model. For instance, cortical 

and trabecular bones, are supposed to be homogenous and isotropic. Loading conditions are static. Restrains are 

positioned only at extremities of long bones, no side ligaments or muscles are recognized. The stress analysis is made at 

medial cross section, therefore far from long bone ends. To maintain straightforward application of model the 

mathematical manipulations are kept at an introductory level, as well as, the utilization of theory of mechanics of solids.  

 
2. A�ALYTIC MODEL 

  

The analytic model is generated through the implementation of a stress analysis of a filled elliptic medial cross 

section of constant thickness wall long bone. Although mechanics of solids was used only at an introductory level, the 

cross section geometry of the two materials elliptic model (cortical and trabecular bones) generates a relatively complex 

set of expressions, therefore is recommended the utilization of a mathematical software, like MathCad. 

Two types of bone tissue, cortical and trabecular, were implemented considering its longitudinal mechanical 

properties (Rapoff, 2007) and (Turner, 1999). It is supposed that loading were divided between both types of bones, 

configuring a parallel arrangement, making the estimation of axial, bending, torsional and transverse shear stresses, as 

will be shown at section 2.2, a function of several mechanical proprieties ratios. These stress evaluations can be 

combined, at a given point of external surface of long bone medial cross section, to generate principal stresses and 

maximum shear stresses, which are key variables to any failure criteria.  

Especial attention was given to maintain the analytic model expression as simple as they could be. Instead of 

generating few very complex expressions it was preferred generate a set of more simple expressions that are substituted 

in each governing expressions. This approach has many advantages, as each variable is explicitly shown, the correctness 

of each expression can be readily accessed and upgrades of expressions can be readily done.  

Although this analytic model covers only a specific case and it is necessary the utilization of mathematical software 

to do the calculations, this approach is far more economical that ones uses by a traditional approach using the finite 

element software.    
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2.1 – Loading at cross section 

 

Figure 1 shows an example of human femur hypothetical cut at a generic medial section. At a distance d away from 

the centre of the generic medial cross section, a static force P is applied at femur's head.  

 

 
Figure 1. An example of a static load of a human femur’s head. 

 

The static force P and distance d are represented by its components in global coordinates system: 

 
* * *

x y zP i P j P k= + +
rr r

P   and  x y zd i d j d k= + +
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d      (1) 

 

At the chosen cross section, the components of force and moments in global coordinates are: 
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The variables presented in bold are vectors, the components of vectors that have an asterisk are referenced to global 

system of coordinates.  $ is the axial force, V is the shear force, M is the bending moment and T is the torsional 

moment. ji
rr

, and k
r

are unit vectors. Note that $V
z
=*

and TM z =
* . 

 

2.2 - The expressions of bi-material elliptic model  

 

Former works estimates the distribution of stresses at external surface of a medial hollow elliptic cross section of a 

long bone (Kenedi, 2009b, 2009a). This model uses a bi-material filled elliptic cross section, taking in account two 

distinct materials: trabecular and cortical bones. Figure 2, shows the geometry and the coordinate systems of this model. 

 

                                
(a)  (b)  

Figure 2. (a) Idealized bi-material elliptic cross section and (b) local and global coordinate systems. 
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Figure 2.a shows a bi-material filled elliptic cross section, with constant thickness wall t, with long axis 2a and short 

axis 2b, and cross sectional areas Ac and At, respectively cortical and trabecular bone areas.  Fig. 2.b shows two 

coordinates systems: local and global. The local coordinates (x,y,z) are attached to cross section, where x and y axis are 

respectively, coincident with 2a and 2b axis. The z axis is obtained by the application of the right-hand rule. Each cross 

section has its own local axis configuration, always maintaining x axis coincident with 2a. Global coordinates (x
*
,y

*
,z

*
) 

has always the same orientation in space, where x
*
y

*
 is a horizontal plane, x

*
z

*
 and y

*
z

*
 are vertical planes. φ is the 

angle between coordinate systems.  

The force and moments components, written in local coordinates, are: 
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Figure 3 shows all the loads acting at a medial cross section of a long bone.  

 

 
Figure 3. Loading acting at a medial cross section of a long bone. 

 

The angle γ locate the angular position of the point of interest, at external bone surface, referred to x axis. The angle 

θ represents the orientation of the element of area (at figure θ = 0°) at external bone surface. Figure 4 shows the bending 

and transverse shear variables of a bi-material filled elliptic cross section of a long bone.  

    
           (a)                 (b)  

Figure 4. Bi-material filled elliptic cross section: (a) Bending variables and (b) transverse shear variables. 

 

The expressions of the analytic model will be presented in the following sequence: axial, bending, torsional and 

transverse shear stresses. The subscripts C and T, at the following expressions, means respectively cortical and 

trabecular bones. 
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The axial stress components, $Cσ and $Tσ are (Crandall, 1978): 
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+
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where, ( )C
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E
n

E
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Where CE and TE are, respectively, the modulus of elasticity of cortical and trabecular bones, n is the ratio between 

the two modulus of elasticity 

 

The bending stresses components, 
xBCσ , 

yBCσ ,
xBTσ and

yBTσ , are (Crandall, 1978): 
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Where, xb and yb are respectively, the perpendicular distances from axis y and x to external bone surface.  
xCI , 

yCI , 

xT
I and 

yT
I are moments of inertia. m is the ratio between two moments of inertia,  ro is the external radius, the distance 

from the centre of cross section to the point of interest at external surface of bone.  

Figure 5 shows a graphical representation of normal stress expressions (4)-(10). It shows a complete turn of angle γ 

at external surface of a medial section of a long bone. The geometric data were the same of a former work (Kenedi, 

2009), based in (Bayraktar, 2004), (Bergmann, 2001) and (Rapoff, 2000), and the loading forces and moments were 

arbitrary chosen to maintain the stresses in an acceptable magnitude (Rudman, 2006).  

 

 
Figure 5. Axial and bending stresses components at external surface of a medial cross section of a long bone. 

 

These curves show that axial stress is constant and bending stresses are maximum at the maximum distance of each 

neutral axis and null at each neutral axis. 
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The torsional stress
TC
τ and 

TT
τ are (Crandall, 1978), (Patnaik,2004) and (Sadd, 2005): 
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Where, 
C

J  and 
T

J  are, respectively, the cortical and trabecular bone polar moments of inertia and 
C

G  and 
T

G  are, 

respectively, the cortical and trabecular bone shear modulus. Α is the area inside a line which passes in middle thickness 

wall of cortical bone cross section. p is the ratio between two polar moment of inertia and q is the ratio between two 

shear modulus. 

The transverse shear stress components, 
xVC

τ , 
yVCτ , 

xVT
τ and 

yVTτ , are (Crandall, 1978), (Patnaik,2004) and    

(Sadd, 2005): 
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Where, 
xcQ ,

ycQ ,
xtQ  and 

ytQ  are first moments of area, 
xct ,

yct ,
xtt  and 

ytt are thicknesses. Note that kx =0 for  

( )
b

y b t≥ − , kx = 1 otherwise, and ky = 0 for  ( )
b

x a t≥ − , ky = 1 otherwise. 
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Figure 6 shows a graphical representation of shear stress expressions (08) and (11)-(18). It shows a complete turn of 

angle γ at external surface of a medial long bone section. As was done at Fig.5, the geometric data were the same of a 

former work (Kenedi, 2009), based in (Bayraktar, 2004), (Bergmann, 2001) and (Rapoff, 2000), and the loading forces 

and moments were arbitrary chosen to maintain the stresses in an acceptable magnitude (Rudman, 2006).  

 

 
Figure 6. Torsional and transverse shear stresses components at external surface of a medial cross section of a 

long bone. 

 

These curves show the torsional and transverse shear stress variation with the angular position γ. It is interesting to 

see the variation of transverse shear at cortical bone when passes from solid to hollow cross section.   

 

2.3 – Mohr Circle 

 

Using Mohr circle approach is possible to transform the axial, bending, torsional and transverse shear stresses in 

principal and maximum shear stresses.  The resultant normal stress and the resultant shear stress can be estimated as 

shown at (20) and (21) expressions: 
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The principal stresses and angles at surface of a medial section of a long bone are:  
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The maximum shear stress and angles at surface of a medial section of a long bone are: 
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3.  CO�CLUSIO�S 

 

A simple analytic model was developed, with limiting hypothesis, to describe the distribution normal and shear 

stresses componentes at external surface of a human medial long bone section, submitted to a static loading.  The 

performance of analytic model was improved, in comparision with former work, by the utilization of two bones 

materials to model the cross section of a medial long bone.  The possibility of estimatimation of principal and maximum 

shear stresses at external surface of medial long bone section, without the necessity of the utilization of a Finite Element 

Software, is the major goal of this work. 
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