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Abstract: Nonlinear estimation based on both extended Kalman and unscented filtering are investigated to gauge the 
performance tradeoff among attitude and angular rate estimation accuracy, robustness to uncertain initial conditions, 
and computational workload. This investigation has been motivated by an experimental setup in LabSim at INPE, 
where a 3-axis, air-suspended table has been instrumented as a testbed for designing and testing of satellite attitude 
control systems. The experimental setup motivated the modelling of  a similar testbed for evaluating the feasibility of 
nonlinear estimation algorithms for low-cost satellite attitude control systems. The simulated testbed neglects the 
actual mass unbalance and corresponding pendulous effect due to gravity torque. Simulation of a reference direction 
by a Sun sensor is accomplished by measuring the local vertical via specific force measurements by a pair of 
accelerometers. A 3D magnetometer measures on board the required additional reference direction, namely the local 
geomagnetic field, to be compared with the output of an external, horizontally aligned, ground-fixed 3D magnetometer. 
The actuator suite is composed of a momentum wheel for azimuth control about the local vertical and air nozzles for 
bang-bang torquing to within 0,5º relative to the local horizontal plane. An extended Kalman filter has been designed 
and tuned to estimate the angular rate vector, Euler angles, and momentum wheel speed. Inertia matrix uncertainty in 
off-diagonal entries, and momentum wheel dynamics along with friction, electromechanical parameters, and 
saturation levels have been considered to validate the attitude estimator. Accurate estimates have been obtained within 
tens of seconds. 
Keywords: Kalman Filtering; Nonlinear Filtering; Attitude Estimation; Simulation; Nonlinear Dynamics 

 
 

1. INTRODUCTION 
 

In this work a 3-degree-of-freedom, air-suspended table is modelled after the satellite simulation testbed in LabSim 
at INPE. The testbed has two pneumatic actuators providing torque about the X and Y, orthogonal, in-plane table-fixed 
axes, and a reaction wheel for the orthogonal Z axis control. The sensor set consists of two accelerometers and two 
magnetometers, one being fixed to the table whereas the other remains fixed externally to the testbed. The 
accelerometers are used to estimate the local vertical and hence determine the table deviation with respect to the local 
horizontal plane, and the magnetometers provide a desired azimuth direction about the Z axis. The purpose of an 
attitude control system should be to align the table with the horizontal plane and point it to a desired azimuth direction. 

Due to the process nonlinearity, two nonlinear estimators have been designed: the Extended Kalman Filter (EKF), 
and the Unscented Kalman Filter (UKF). State feedback under the assumption of linearized dynamics has been used. 
Notice that the main focus here is on investigating and comparing performances attained by the EKF and UKF.  

Simulations of both estimators have been conducted and their respective performances compared with respect to 
estimation accuracy and computational load.  

 
2. SYSTEM MODEL 

 
This section describes the mathematical models used for control law design and to simulate closed-loop attitude 

estimation and control of the air-suspended table. 
 

2.1. Coordinate Frames 
 

Three coordinate frames have been used to derive an adequate model. The first one is the body-fixed coordinate 
frame, or {Xb, Yb, Zb}, which is attached to the table with the Z axis perpendicular to the table plane and points upward. 
The second coordinate frame is the reference frame, or {Xd, Yd, Zd}, which is in alignment with the external 
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magnetometer axes. Both b and d frames are shown in Fig. 1. The rotation sequence has been parameterized by Euler 
anglesψ ,θ  and φ , respectively about body axes Zb, Yb, and Xb, thus rotating a vector representation from the 

reference frame basis to the body frame one. Note that here the inertial coordinate frame neglects Earth’s rotation rate. 
The reference frame has been useful for comparing the built-in magnetometer measurements with respect to the 

external magnetometer data. Additionally, a horizontal coordinate frame, or {Xh, Yh, Zh}, has resulted from rotating the 
body-fixed, table coordinate frame with Euler angles φ− and θ− about Xb, and Yb axes, respectively. The resulting 

horizontal frame is rotated by angle ψ  about the local upward vertical with respect to the desired reference frame. This 

is also shown in Fig. 1. 
 

    
 

Figure 1. Table frame (left), desired reference frame (middle) and horizontal frame (right). 
 
2.2. Sensors 

 
The air-suspended table relies on three sensors for attitude estimation: two accelerometers and one magnetometer. 

The accelerometers are used to estimate the local vertical, and thus align the table with the horizontal coordinate frame. 
Data from the built-in magnetometer, called M1, has been compared with the output of the external magnetometer, 
called M2, to determine the error with respect to the reference azimuth direction about the local vertical.  

The two accelerometers measure the Xb ( 1,bAsp ), and Yb ( 2,bAsp ) components of gravity’s reaction specific force 

in the body-fixed, table coordinate frame, as in Eq. 1: 
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where b
dD is the direction cosine matrix (DCM) that transforms a vector representation from the reference frame to the 

table coordinate frame. Accelerometer bias and measurement noise have not been considered in Eq. 1, but they have 
been added to validate the closed-loop control and the estimators. 

Both magnetometers have been assumed to be located in such way that the local magnetic field vector is practically 
the same at both locations. Otherwise, comparing their respective measurements would not be feasible for tracking the 
reference azimuth direction and the accuracy when estimating Euler angle ψ  would be degraded. 

The magnetometer on board the air-suspended table output a vector measurement, bM2 , which called for 

representation in the horizontal coordinate frame. That has been done with the estimated Euler angles φ̂ andθ̂  to 

approximate the DCM h
bD , as in Eq. 2. 

 

b
b
dh M2DM2 .≈  (2) 

 
One can compare h1M and bM2 to approximate the desired Euler angleψ , which is the angle about the local 

vertical that the horizontal frame must be rotated to be in alignment with the reference frame, thus yielding Eq. 3: 
 

h,2d,1h,1d,2 M2.M1M2.M1)sin( −=ψ  (3) 

 
where ydMx , is the y-th component of the unit-norm measurement vector produced by the x-th magnetometer. 

Therefore, the sensor suite described here allows for the measurement of the three Euler angles that rotate the reference 
coordinate frame to table frame. 

 
2.3. Actuators 
 

A set of three actuators is used to control the air-suspended table about its three axes: two pneumatic actuators for 
the Xb and Yb axes, and one reaction wheel for Zb. The pneumatic actuators are controlled by a pulse width modulation 
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(PWM) signal that determine the on-off duty cycle. Additive white noise has been included in the actuator model to 
account for the small turbulence at the nozzles when torquing the table. Three parameters are called for in such a model: 
the torque magnitude that is applied on the table by the nozzles when the actuator is on, the frequency of the PWM 
carrier, and the actuator noise variance. 

The reaction wheel was modelled as in Sidi (1997). This model has included wheel motor dynamics, current and 
voltage limits, viscous friction, and the maximum angular rate limit. Zero-crossing dead-band has been discarded from 
this model because it can be easily avoided by assuming that the reaction wheel can be initialized with non-zero angular 
rate, hence becoming a biased momentum wheel, and such an initial condition does not affect the results. The 
corresponding block diagram can be seen at Fig. 2, where mI is the wheel inertia, 3,mI is the table inertia around the Zb 

axis, mK , vK , mR andB are electromechanical wheel parameters,wT is the commanded torque, and3u is the real torque. 

The wheel angular rate with respect to the air-suspended table can be measured by an embedded tachometer in the 

device. This measurement is tacω and it is composed of wb
b 3,ω  plus white-noise. 

 

 
 

Figure 2. Reaction wheel block diagram. 
 

2.4. Dynamic system model   
 

The dynamic system model was adapted from Sidi (1997). 
The table inertia matrix without the reaction wheelbm,I , and the reaction wheel inertia matrix bw,I , both 

represented in the body-fixed table coordinate frame b, are shown in Eqs. 4. 
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The table angular rate vector with respect to the inertial frame represented in the b coordinate frame bi
bω , and the 

reaction wheel angular rate vector with respect to the table represented in the same coordinate frame wb
bω  are shown in 

Eqs. 5: 
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Based on a Newtonian approach, the dynamic model is represented in the table coordinate frame b as in Eq. 6: 
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where bd,T is the disturbance torque, bc,T is the control torque output by the pneumatic actuators and shown in Eq. 7, 

bH is the total angular momentum of the table and the reaction wheel as in Eq. 8, and 3u is the actual torque acting on 

the reaction wheel as shown at Fig. 2. Unbalance torque due to gravity has been disconsidered since the testbed is 
assumed to have undergone a balancing procedure to align the mass center with the table air bearing. 
 

[ ]Tbcbcbc TT 02,,1,,, =T  (7) 



V I  C o n gr es s o  N a c i o n a l  d e  E n g e n ha r i a  M e c â n i c a ,  18  a  2 1  de  A g o s t o  2 0 10 ,  C am p i n a  G r a n d e  -  P a r a í b a  

 
wb
bbw
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The table angular rate vector bi
bω  relates to the attitude kinematics given by the Euler anglesψ ,θ , and φ  time 

derivatives according to Eqs. 9: 
 

bi
b

bi
b

bi
b

bi
b

bi
b

bi
b

bi
b

3,2,

3,2,

3,2,1,

)cos(

)cos(

)cos(

)sin(

)sin()cos(

)tan()cos()tan()sin(

ω
θ
φω

θ
φψ

ωφωφθ

ωθφωθφω

+=

−=

++=Φ

&

&

&

 (9) 

 
Hence, the complete model has been constructed using Eqs. 6, 8, 9, and the reaction wheel model seen in Fig. 2. 
 

3. MODEL STATE AND MEASUREMENT VECTORS 
 

Analyzing the model equations in the previous section, a vector state with seven real components has been defined: 
the three Euler angles that rotate from the reference frame to the body-fixed table frame, the three components of the 
angular rate vector of the table with respect to the inertial frame, and the reaction wheel speed with respect to the table. 
Static friction torque in the vicinity of the reaction wheel zero speed yields a steady-state pointing error about the Zb 
axis. Therefore, the integral of such pointing error, shown in Eq. 10, has been selected to augment the state vector as the 
eighth state component as seen in Eq. 11. 
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The reference state is given by Eq. 12. Thus, the controller should align the table with the local horizontal plane, 

and likewise the on-board magnetometer measurement components with those of the external magnetometer. 
 

[ ]Tref 00000000=x  (12) 

 
Recalling Eq. 3, the measurement vector concatenates accelerometers, magnetometers and tachometer data as in Eq. 

13. 
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4. CONTROL STRATEGY 

 
The main focus is to investigate and compare the performance of two nonlinear estimators. Consequently, a 

straightforward control technique based on state feedback has been used. Firstly, the system has been linearized around 

refx . As a result, the horizontal plane dynamics given by state components φ ,θ , bi
b 1,ω and bi

b 2,ω  has become decoupled 

from the vertical dynamics embedded in the remaining state components. Such decoupling allowed for the design of 
two separate state feedback control laws for the horizontal and vertical dynamics, respectively. Then, the closed-loop 
poles in Eqs. 14 have been located to avoid actuator saturation while still yielding an acceptable settling time. 

 
[ ] [ ]15,02,02,02,02,05,15,111 −−−+−=−−−−= jjverticalhorizontal pp  (14) 

 
Additionally, each horizontal axis control is turned off when the corresponding Euler angle error norm is less than 

0,25°, and the control is switched back on when this error is higher than 0,5°. This avoids high-frequency switching in 
actuators when the system is near the reference. 
 
5. ESTIMATORS  
 

Given the nonlinear model, an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF) have been 
compared to gauge the performance in terms of estimation accuracy and computational load. This section describes 
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details about the implementation of both estimators. The filters assumed a set of model simplifications. The disturbance 
torques have been considered nonexistent, the inertia matrices of table and reaction wheel considered diagonal, i.e., 
without inertia products, and the reaction wheel dynamics have been neglected, i.e. 3uTw = . 

 
5.1. Extended Kalman Filter (EKF) 

 
The EKF performs the linearization of the dynamical equation about the updated state estimate and the linearization 

of the measurement equation about the propagated state estimate (Ristic et. al, 2007). The model dynamics and 
measurement equation, omitting model and measurement noise, can be written as in Eqs. 15: 

 
)(),( xhyuxfx ==&  (15) 

 
whereu is a vector containing commanded torques for both pneumatic actuators and the reaction wheel, and(.)f is a 

function concatenating Eqs. 4 to 10 considering the aforementioned simplifications. The EKF has been implemented 
using the continuous-discrete approach. As a result, state estimate propagation method has been accomplished by 
integrating the model dynamics between measurement samples using 1|1ˆ −− kkx as the initial condition, as in Eq. 16: 
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The error estimation covariance is propagated as in Eq. 17 using 1|1 −− kkP as the initial condition: 
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where ),( uxJ f is the Jacobian matrix of the function(.)f at the point ),( ux , and Q is the model noise covariance matrix. 

Both integrations have used the Runge-Kutta 4th-order algorithm. The update has been based on linearizing the 
measurement equation as in Eq. 18: 
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Therefore, the Kalman update step can be summarized as in Eqs. 19: 
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5.2. Unscented Kalman Filter (UKF) 

 
The UKF uses the unscented transform to achieve a better estimation than the EKF if the process is highly 

nonlinear. The unscented transform calculates a set of σ-points that are propagated using the nonlinear model and 
measurement equations to estimate the mean and covariance of the stochastic state vector (Ristic et. al, 2004). Unlike 
the EKF, it does not need computation of Jacobians. Nevertheless, the computing of σ-points requires a great amount of 
computational effort, which makes this method slower than the first in almost every practical situation. The UKF has 
been also used along the continuous-discrete approach (Särkkä, 2007). So, the state propagation uses the unscented 
integration with 1|1ˆ −− kkx as the initial condition, as in Eqs. 20: 
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where an is the number of states, κ is a tuning factor in which 3 is optimal for Gaussian noise, and )(tP is the square 

root matrix of )(tP  computed as the lower triangular matrix in the Cholesky factorization. 

The covariance propagation is as in Eqs. 21, where 1|1 −− kkP is the initial condition (Särkkä, 2007): 
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The above integration uses the Runge-Kutta 4th-order algorithm, whereas the UKF update is given in Eqs. 22 (Ristic 

et. al, 2004): 
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6. SIMULATIONS 

 
6.1. Parameters 
 

The simulations have been carried out using table parameters from Carrara and Milani (2007), and XSens MTiG 
IMU specification sheet. Table 1 shows the used values. Ground-truth inertia matrices of the table and reaction wheel 
have included inertia products to account for a residual assembly mass unbalance. Equation 23 shows the measurement 
noise covariance matrix used in both filters: 

 

)500/.481,9/81,9/( 222
.

2
. tacmagaccelacceldiag σσσσ=R  (23) 

 
where (.)diag means a diagonal matrix. The model noise covariance needed to be separately tuned for each filter to 

avoid divergence during the simulation. The selected values for the EKF and UKF is in Eq. 24: 
 

8888 .45,0.5,0 xuscxext IQIQ ==  (24) 

 
6.2. Filter performance 

 
Two metrics have been defined to gauge filter performance. The first computes the rotation angle about the Euler 

axis that is related to the attitude estimation error at each iteration as in Eq. 25. It has been used to ascertain the attitude 
estimation accuracy of each filter. The second computes the norm of the angular rate vector estimation error at each 
iteration as in Eq. 26. 
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where b
kkd |,D̂ and b

dD  are the estimated and true direction cosine matrices, respectively, at instant k that rotate from the 

reference coordinate frame to the table coordinate frame, and kk|ω̂ and kω  are the estimated and true table angular rate 

vector, respectively, at instant k. These two metrics have been computed at each iteration over a large number N of 
Monte Carlo simulations. At the end, the mean and standard deviation have been computed. 
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Table 1. Parameters used at simulation. 

 
Symbol Description Value 

General 
h  Sample time s01,0  

bm,I  Table inertia matrix, without the reaction wheel, 
represented in table coordinate frame 2.

4954,005,0.4954,01,0.4954,0

05,0.4954,02/4954,01,0.4954,0

1,0.4954,01,0.4954,02/4954,0

mkg
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bw,I  Reaction wheel inertia matrix represented in 
table coordinate frame 2

333

333

333

.

10.5,105,0.10.5,11,0.10.5,1

05,0.10.5,12/10.5,11,0.10.5,1

1,0.10.5,11,0.10.5,12/10.5,1

mkg
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lB  Local magnetic field represented in the 
reference coordinate frame 

[ ] mGaussT 500.2182,04364,08729,0 −  

Sensors 

.accelε  Accelerometer bias mg1  
2

.accelσ  Accelerometer measurement noise variance 222 )/()30.002,0( sm  
2
tacσ  Tachometer measurement noise variance 2005,0 V  
2
magσ  Magnetometer measurement noise variance 22 )()10.5,0( mGauss  

 Actuators 

maxTp  Maximum torque output by the pneumatic 
actuators 

mN.1,0  

2
pσ  Pneumatic actuator torque noise variance 2).(1000/1,0 mN  

pf  Pneumatic actuator PWM carrier frequency Hz2  

wb
b max,ω  Reaction wheel maximum angular rate rpm4200  

maxTw  Reaction wheel maximum torque mN.05,0  

mK  Reaction wheel motor constant AV /023,0  

satci ,  Reaction wheel current saturation AKTw m/max  

mR  Reaction wheel motor resistance Ω10  

satcV ,  Reaction wheel voltage saturation ViR satcm ,.  

picK ,  Proportional gain in reaction wheel PI controller 10 

picI ,  Integral gain in reaction wheel PI controller 2 

wB  Reaction wheel viscous friction coefficient 610.9,4 −  

wvK ,  Reaction wheel vK  back-emf coefficient radsV /.10.1 3−  

 
6.3. Results 

 
For each scenario described below, 100 Monte Carlo simulations have been carried out in a time interval from 0s to 

100s. The initial state vector has been kept fixed and given in Eq. 27 with SI units. For each simulation, the filter initial 
estimate has been set equal to the initial state vector plus a random vector in which each component was a random 
Gaussian variable with zero mean and variance 0.1. 
 

[ ]T00180/.2180/.3180/.3180/.20180/.30180/.250 ππππππ −−−=x [SI units] (27) 

 
An unexpected, deterministic disturbance torque has been applied at t=45s to investigate filter behavior and 

convergence. The applied torque vector is given in Eq. 28. 
 

[ ] mNT
bd .3,07,07,0, −=T  (28) 

 
The first scenario used the EKF as the estimator. The results are plotted in Fig. 3. The second scenario used the 

UKF and the results are shown in Fig. 4. Figure 5 plots the mean errors of the first and second scenarios together. The 
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mean filter algorithm simulation time in the first approach was 4.8136s with a standard deviation of 1.096s. The mean 
filter algorithm simulation time in the second approach was 9.6889s with a standard deviation of 0.8601s. 

Figure 6 shows that the UKF has yields more accurate attitude estimates after the unexpected disturbance. At the 
first peak, the UKF error corresponded to only 64.6% error of the EKF’s. However, the corresponding computational 
load in the UKF was 101.3% higher. In steady state, the estimation error produced by the two filters was quite similar. 
Then, a third scenario was simulated in which the EKF is used during usual operation and switches to the UKF at t=46s 
using the updated state estimation and covariance from the EKF. This procedure attempts to reproduce a condition in 
which the control system embeds a fault detection, diagnosis, and reconfiguration scheme that takes 1s to identify the 
disturbance and then switch accordingly from the EKF to the UKF. The mean filter algorithm simulation time was 
7.4007s with a standard deviation of 0,5088s. Finally, a comparison between the first and third scenarios is plotted in 
Fig. 6. 

 

 
 

Figure 3. Scenario 01 results – Extended Kalman Filter. 
 

 
 

Figure 4. Scenario 02 results – Unscented Kalman Filter. 
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7. CONCLUSIONS 

 
Two nonlinear estimation techniques have been investigated for use in a simulated air-suspended table subject to a 

straightforward, linearized state feedback law for attitude control. The table uses two pneumatic actuators for alignment 
with the local horizontal plane, and one reaction wheel for azimuth alignment. The sensors consist of two 
accelerometers to estimate the local gravity vector direction, and two magnetometers - one on board the table, and the 
other fixed to the inertial coordinate frame to provide azimuth alignment about the local vertical. 

The nonlinear system dynamics have been linearized around the desired state, thus decoupling horizontal and 
vertical dynamics. The state feedback control has successfully allocated the closed-loop poles in the desired locations 
for each of the decoupled dynamics.  

Three scenarios have been simulated with an unexpected deterministic torque disturbance. The first one used an 
Extended Kalman Filter, the second used an Unscented Kalman Filter, whereas the third used the EKF that switched to 
the UKF after the disturbance has been detected. 

The UKF showed more accurate attitude estimation after the disturbance in comparison with the EKF, but the 
estimation quality of both in steady-state was quite similar. Thus, since the UKF had a computational load 101.3% 
higher than the EKF, a switch from the EKF to the UKF was proposed in case a disturbance occurs after a steady-state 
interval. This hybrid EKF-UKF scenario produced an error very similar to the second scenario but with a computational 
load only 53.7% higher than the EKF-only approach. One should notice though that this investigation has not 
considered any fault detection and diagnosis scheme to automatically produce the aforementioned switching. Such 
scheme is definitely a factor to contribute to the computational load of the hybrid approach. 

The UKF exhibited a behavior less robust to parameter tuning than the EKF. When the filter tuning parameters 
were not fine tuned, numerical errors arise and remove the positive definiteness of the estimation error covariance 
matrix. This loss of positive definiteness causes the square root matrix computation in Eq. 22 unfeasible. The EKF 
approach also exhibited divergence when its tuning parameters filter were not appropriately tuned, though the 
acceptable intervals for variation of such parameters were found to be quite large. 

Finally, the UKF provided an estimation gain when compared to the EKF, and such can be an interesting feature in 
some applications. The heavier computational load can be reduced with a hybrid approach as described in the third 
scenario, though it calls for the additional computations in a fault detection and diagnosis algorithm.  

Future investigation should focus on finding ways to avoid the problem encountered regarding the covariance 
matrix square root calculation in the UKF, thus adding to filter robustness to numerical errors in a real application. 
Advancing further towards more recent nonlinear filtering, e.g. the particle filters, future investigation into filter 
performance under disturbance occurrences seems an attractive avenue, since the computational power of embedded 
computing resources is increasing each day and may render the usage of more sophisticated filters in real aerospace 
applications. 

 

 
 

Figure 5. Comparison between the first and second scenarios. 
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Figure 6. Comparison between the first and third scenarios. 
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