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Abstract. This paper presents results for coupled heat and mass transport under laminar and turbulent flow regimes in 
porous cavities. Two driving mechanisms are considered to contribute to the overall momentum transport, namely 
temperature driven and concentration driven mass fluxes. Aiding and opposing flows are considered, where 
temperature and concentration gradients are either in the same direction or of different sign, respectively. Modeled 
equations are presented based on the double-decomposition concept, which considers both time fluctuations and 
spatial deviations about mean values. Turbulent transport is accounted for via a macroscopic version of the ε−k  
model. 
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1. INTRODUCTION  
 
The study of double-diffusive natural convection in porous media has many environmental and industrial 

applications, including grain storage and drying, petrochemical processes, oil and gas extraction, contaminant 
dispersion in underground water reservoirs, electrochemical processes, etc. The importance of double diffusive natural 
convection can be better appreciated by the volume of papers published in this field, which was reviewed by Nield and 
Bejan (1999). 

Accordingly, double diffusive convection in a vertical cavity subject to horizontal temperature gradients has been 
investigated by Trevisan and Bejan (1985, 1986), Goyeau et al (1996), Mamou et al (1995, 1998), Mohamad and 
Bennacer (2002), Nithiarasu et al (1997), Bennacer et al (2001, 2003), among others. In most of the aforementioned 
papers, the intra-pore flow was assumed to be laminar and it was demonstrated that, depending on the governing 
parameters of the problem and on the thermal to solute buoyancy ratio, various modes of convection prevail. However, 
in some specific applications, the fluid mixture may become turbulent and difficulties arise in the proper mathematical 
modeling of the transport processes under both temperature and concentration gradients. Due to such difficulties, there 
seems to be a lack in the literature on turbulent solution of double-diffusive convection.  

Motivated by the foregoing, in an earlier paper de Lemos and Tofaneli (2004) a mathematical framework for 
treating turbulent double-diffusive flows in porous media was presented, but no numerical simulations were published. 
That work was derived from a general mathematical model for turbulent flow in porous media Pedras and de Lemos 
(2003), which was developed under a concept called “double-decomposition” de Lemos (2005). Such concept 
considered time fluctuations of the flow properties in addition to spatial deviations, in relation to a volume-average, 
when setting up macroscopic equations for the flow. Using such concept, non-buoyant Rocamora and de Lemos (2000) 
as well as buoyant heat transfer has been considered Braga and de Lemos (2004, 2009) in addition to turbulent mass 
transfer de Lemos and Mesquita (2003). Application of such methodology to channel flows with porous inserts Assato 
and de Lemos (2005), Santos and de Lemos (2006), have also been presented. However, in none of the above 
applications, results for turbulent double diffusion in porous media were presented. 

The purpose of this contribution is to show numerical results for turbulent double-diffusive in porous media, which 
are obtained with the mathematical model earlier proposed in de Lemos and Tofaneli (2004). To the best of the authors´ 
knowledge, no solutions for turbulent flow using the work of de Lemos and Tofaneli (2004), have been previously 
published. Here, both aiding and opposing cases are investigated.  
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2. MACROSCOPIC MATHEMATICAL MODEL  
 
The problem considered here is showed schematically in Figure 1a and refers to a square cavity containing a 

saturated porous medium. The cavity of height H , width L  and aspect ratio 1== LHA  is filled with a binary fluid. 
The enclosure is isothermally heated from the left and cooled from the opposing side. The top and bottom walls are kept 
insulated and the porous medium is considered to be rigid. The binary fluid in the cavity of Figure 1a is assumed to be 
Newtonian and to satisfy the Boussinesq approximation. 

The equations used herein are derived in details in Pedras and de Lemos (2003), de Lemos (2005), de Lemos and 
Tofaneli (2004) and for that their derivation need not be repeated here. They are developed based on volume-averaging 
procedures which are fully described in the literature Hsu and Cheng (1990), Bear (1972), Whitaker (1966, 1967). 

 The macroscopic continuity equation is then given by,  
 

0=∇ Du  (1) 
 

where the Dupuit-Forchheimer relationship, i
D 〉〈= uu φ , has been used and i〉〈u  identifies the intrinsic (liquid) average 

of the local velocity vector u . The macroscopic time-mean Reynolds equation for an incompressible fluid with 
constant properties is given as, 
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where the last two terms in (2) represent the Darcy-Forchheimer contribution. The symbol K  is the porous medium 
permeability, Fc  is the form drag coefficient (Forchheimer coefficient), ip〉〈  is the intrinsic average pressure of the 
fluid, ρ  is the fluid density, µ  represents the fluid viscosity and φ  is the porosity of the porous medium. Buoyancy 
effects due to temperature and concentration variations within the cavity are also shown in Eq.(2). The macroscopic 
Reynolds stress i〉′′〈− uuρφ  is modeled as,  
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where 
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is the macroscopic deformation tensor, 2iik 〉′⋅′〈=〉〈 uu  is the intrinsic turbulent kinetic energy, k  and φµt , is the 
turbulent viscosity, which is modeled in de Lemos (2005) similarly to the case of clear flow, in the form, 
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Coefficients φβ  and 

φ
βC  in (2) are used to write the Grashof numbers associated with the thermal and solute drives, 

in the form, 
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where T∆ = 21 TT −  and C∆ = 21 CC −  are the maximum temperature and concentration variation across the cavity, 
respectively. One should note that for opposing thermal and concentrations drives, such maximum differences are of 
opposing sign. Also, the Rayleigh-Darcy number is a dimensionless parameter defined as effvTHKgRa αβφ∆=* , with 

fpeffeff c )(ρλα = . 

The ratio of Grashof numbers defines the buoyancy ratio, N , in the form 
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giving for equation (2), 
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Either 0=

φ
βC  or 0=∆C  results in 0=N , or say, only thermal drive applies. Also, for 0=

φ
βC  and 0≠∆C  in (8), 

although no concentration drive is modeled, a distribution of C within the field will occur due to the flow established by 
the thermal drive.  

The additional transport equations can also be found in de Lemos and Tofaneli: 
 

Heat transport 
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Mass transport 
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Transport equations for ik〉〈  and its dissipation rate ( ) ρµε iTi 〉′∇′∇〈=〉〈 u:u  including additional effects due to 

temperature and concentration gradients are proposed in Pedras and de Lemos (2003): 
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where 1c , 2c , 3c  and kc  are constants. The generation rate of k due to buoyancy is represented by iGβ  and i

C
Gβ  for 

both the thermal and solute drives, respectively de Lemos and Tofaneli (2004).  
 
2.1 Integral Parameters  

 
The local Nusselt number on the hot wall of the square cavity (x = 0) is defined as, 
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where 1T  and 2T  refers to the temperature limits imposed at the cavity lateral walls.  

The average Nusselt number is then given by, 
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Likewise, the local Sherwood number on the wall where the highest concentration prevails, or say, at 0=x  for 

adding drives and at Lx =  for opposing cases, can be defined as, 
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Here also 1 and 2 are subscripts referring to the maximum and minimum concentration values, respectively, and Ch  

is a film coefficient for mass transfer. The average Sherwood number is then given by, 
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H
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 The variables h  and ch  are local film coefficients for heat and mass transfer, respectively. 

  
2.2 Numerical Details  

 
The numerical method employed for discretizing the governing equations is the control-volume approach. A hybrid 

scheme, which includes both the Upwind Differencing Scheme (UDS) and the Central Differencing Scheme (CDS), 
was used for interpolating the convection fluxes. The well-established SIMPLE algorithm Patankar and Spalding 
(1972), was followed for handling the pressure-velocity coupling. Individual algebraic equations sets were solved by the 
SIP procedure of Stone (1968). In addition, concentration of nodal points closer to the walls reduces eventual errors due 
to numerical diffusion which, in turn, are further annihilated due to the hybrid scheme here adopted. Calculations for 
laminar and turbulent flows used a 8080×  stretched grid for all cases (Figure 1b). For turbulent flow calculations, wall 
log laws were applied. 

 
3. RESULTS AND DISCUSSION  

 
As mentioned, this work refers to the study of natural convective flows in a porous cavity of height H , width L  

and aspect ratio LHA = =1 saturated by a binary fluid. The flow is incompressible and two dimensional steady state 
was assumed. Horizontal temperature and concentration differences were specified between the vertical walls (Figure 
1a). 

The validation of the numerical code has been performed over a large range of parameters for purely thermal 
natural convection in porous media. Table 1 shows average Nusselt e Sherwood numbers for laminar flow compared 
with those by Trevisan and Bejan (1985) and Goyeau et al (1996). Results in the table consider mass transfer caused by 
thermal convection only ( 0=N ). In this configuration, the solute buoyancy force is not present but mass transfer 
across the cavity occurs due to the thermally driven flow. The table shows good agreement with similar computations 
presented in the literature and indicates correct programming of the numerical code developed. 
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Figure 1: Configuration investigated: a) geometry and boundary conditions, b) stretched grid. 

 
 
 

Table 1: Average Nusselt and Sherwood numbers for thermal drive only, 0=N  with 0=
φ

βC , ( 1,10 == ALe ). 
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Present 
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Goyeau et al 
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Trevisan and 
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Figure 2: Comparison of integral parameters as functions of the buoyancy ratio N  for turbulent and laminar 

model solutions, 6* 102×=Ra , 101025.2 ×=φGr , 61088.8 −×=Da , fseff λλλ ==  and 8.0=φ : a) Nusselt 
number; b) Sherwood number. 

 
 
Simulations considering laminar and turbulent flow for 8.0=φ , 6* 102×=Ra , 10Pr = , 101025.2 ×=φGr , 

61088.8 −×=Da , fseff λλλ ==  and 0.1=Le  are shown next. The buoyancy ratio N  was varied from -5 to 5, for both 
model solutions. 
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Figure 2 shows the average Nusselt and Sherwood numbers at the heated wall as a function of N . For aiding flows 

( 0>N ), Nu  and Sh increase with N . The figure also shows that there are significant variations between the laminar 
and turbulent model solutions, with integral values nearly doubling when turbulence is considered, at least for the 
particular conditions presented in the figure.  

The case for 0=N  indicates that convection is sole due to thermal buoyancy. However, since the C-equation is 
also solved, the flow mixes the concentration field and a corresponding Sherwood is computed. The value of Nu  is at 
minimum when 1−=N , when the two driving mechanisms oppose each other with equal strength. Under such 
circumstances, conduction prevails across the cavity. 

The Figure 2 further indicates that as N  is decreased below -1, negative buoyancy forces due to species 
distribution acts vertically downward, along the heated wall, thereby opposing the vertically upward thermal buoyancy 
drive. For that, transport rates are lower for 1−<N  when compared with aiding cases having the same numerical value 
of N . That is, laminar Nu  and Sh  for 4+=N  are 15% higher than for 4−=N , for example. For turbulent solution, 
such differences for the same values of N  are around 23% for both Nu  and Sh .  

  
4. CONCLUSIONS  

 
This work presents numerical computations for laminar and turbulent flows using a macroscopic ε−k  model with 

wall functions. Double-diffusive natural convection in a square cavity, totally filled with porous material, was 
simulated. The cavity was heated from the left and cooled from the opposing side. For aiding laminar flows, predicted 
integral parameters were 15% higher when compared with flows with similar but opposing conditions. For adding 
turbulent flows, Nu  and Sh  values are roughly 23% higher than for the cases of opposing flows, at least for the 
conditions here simulated. 
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