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Abstract. The purpose of this paper is to analyze the performance of a turboprop transport aircraft, aiming for the 
minimization of the operating costs. The direct operating cost is discussed, and a parameter called σ (sigma) that 
represents the relative importance of fuel and time in cost is defined. A mathematical model of the aircraft in flight 
(considered as a point-mass restricted to a vertical plane) is created, allowing for the determination of data such as 
distance, altitude, fuel and time by numerical integration. These results are then iterated in an optimization routine, 
obtaining climb, cruise and descent speeds and cruise altitudes that minimize the cost in a given scenario. These 
resulting optimum flight parameters are verified by simulating a sample mission, flown using speeds and altitudes 
obtained for solutions ranging from minimum time to minimum fuel. Finally, the resulting cost associated with each of 
these cases is obtained, the optimal case is determined and the impacts in term of cost increase for the off-optimal 
solutions are discussed. 
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1. INTRODUCTION 
 
The global trend of rising fuel prices in the near future will unavoidably affect the aviation business. As the slice of 

the costs linked to fuel grows, aircraft that are more fuel-efficient will become increasingly attractive. Within the range 
of speeds and altitudes used in commercial aviation, the most efficient propulsion type is the turboprop engine 
(Roskam, 1997). Currently turboprop aircraft are mostly used in short-haul routes, but as fuel becomes more expensive 
there is a tendency that they will become more interesting in a broader range of missions. 

This paper intends to present an operating cost oriented analysis of the performance of a hypothetical turboprop 
aircraft. A mathematical model of the aircraft is defined to calculate parameters such as flight time, distance and fuel 
burnt, which are input to optimization methods aimed at find minimum cost. The obtained data are then applied onto a 
sample set of missions, whose results are then presented and analyzed. 

 
2. AIRCRAFT TECHNICAL SPECIFICATIONS 

 
The aircraft studied in this paper is a FAR-23 basis certified light twin-engine turboprop transport aircraft, mainly 

directed at military operation. Its performance-related specifications are listed in Tab. 1: 
 

Table 1. Aircraft specifications 
 

Wing Area 38.0 m² Maximum Payload Weight 3000 kg 

Basic Operational Weight (BOW) 4632 kg Maximum Fuel Weight 2000 kg 

Maximum Takeoff Weight (MTOW) 8600 kg Maximum Engine Power (1) 932 kW (1250 SHP) 

Maximum Operating Speed (VMO) 120.9 m/s CAS (235 KCAS) Operational Ceiling 8230 m (27000 ft) 

Operating cost per fuel unit (
FC ) (3) 1.15 US$/kg Operating cost per time unit (

TC ) (3) 0.0539 US$/s 

Maximum Lift Coefficient (
LC ) (2) 1.85   

 (1) per engine 
 (2) clean configuration 
 (3) costs are valid only for a single hypothetical military operator 
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3. MATHEMATICAL MODEL 
 
The four main forces relevant to flight are lift (L ), drag (D ), thrust (F ) and weight ( gmW ⋅= ). Figure 1 

illustrates how each of these forces acts on an aircraft moving in a vertical plane, where α  is the angle of attack, γ  the 

angle of trajectory, 
fα  the propulsive angle and V  the aircraft’s velocity vector. 

 

 
 

Figure 1. Forces acting on an aircraft in a 2-D plane 
 
Assuming there is no wind, considering the aircraft as a point-mass entity and restricting the movement to a two-

dimensional vertical plane, the equations that describe the motion are: 
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Also, it is necessary to define an expression to account for the variation of mass over time: 
 

••
−= fmm  (5) 

 
The above defined expressions can be then numerically integrated to determine flight times and fuel masses. Lift 

and drag are given by Eq. (6) and Eq. (7), where ρ  is the atmospheric density (in this paper, considered as defined by 

the International Standard Atmosphere), V  the aircraft’s true airspeed, S  the reference area and 
LC  and 

DC  

respectively the lift and drag coefficient. 
DC  is a function of 

LC  in a drag polar. Thrust (F ) and fuel consumption 

(
•

fm ) are outputs from a specific computer program which simulates the engine/propeller combination, as a function of 

factors such as speed, altitude and throttle setting. 
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3.1. Special Case: Cruise 
 

When cruising the aircraft flies in a horizontal trajectory and thus 0=γ  and 0=
•
γ . Also, it is safe to assume that 

speed is constant or varies very little ( 0≈
•

V ) and the angle of attack is small ( 0)( ≈+ fαα ). With these considerations 

the equations of motion in cruise are reduced to: 
 

DF =  (8) 
 

gmL ⋅=  (9) 

 

Vx =
•

 (10) 
 

3.2. Special Case: Climb/Descent 
 

In a steady climb it can be assumed that the aircraft climbs at a near-constant angle, therefore 0≈
•
γ . Also assuming 

that the angle of attack is small ( 0)( ≈+ fαα ), the following expression results: 
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Knowing that )sin(γ⋅=
•

VH , an expression for the rate of climb can be obtained by an algebraic manipulation: 
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In the expression above the denominator is called SEP (Specific Excess Power) and the numerator is called AF 

(Acceleration Factor). Expressions for AF in commonly used flying techniques such as constant calibrated airspeed or 
Mach number are developed and presented in great detail in (ESDU, 1981). 

 
4. OPERATING COST 

 
The fraction of aircraft’s operating cost related directly to the operation is called DOC (Direct Operating Cost). 

DOC is defined by the sum of the costs due to elapsed flight time and expended fuel, plus a fixed cost (
0C ). The cost 

due to time is defined as the flight time (T ) multiplied by the cost per time unit (
TC ), while the cost due to fuel is given 

by the fuel spent (F ) multiplied by the cost per fuel unit (
FC ) (Airbus, 2002). 
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 (13) 

 
Equation (13) can be expressed in the form of an integral on a time interval: 
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It is convenient to define a variable which represents the relative importance of the time and fuel related costs. In 

this paper a parameter called σ  (sigma) expressed in Eq. (15) will be used. 
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Sigma (σ ) is contained in a closed interval between 0 and 1. When 

FC  is much larger than 
TC  (that is, fuel costs 

are much more critical than time costs), σ  tends to 1. Likewise, when 
TC  is much larger than 

FC  , σ  tends to 0. By 

means of algebraically substituting Eq. (15) into Eq. (14), DOC  can be expressed as a function of σ : 
 

( ) ( ) 














 −+⋅⋅++= ∫
=

=

•
dtmCCCDOC

Tt

t

fTF

0

0 1 σσ  (16) 

 
In the expression above, the integral is known as the cost function and is called J . Since 

0C , 
FC  and 

TC  are 

constants, the value for DOC  is minimized when J  Eq. (17) reaches its minimum value. 
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It is of the utmost importance to have in mind that the expression for σ  is not homogeneous in terms of units. 

Therefore, the units used for 
FC  and 

TC  directly influence the value of σ .  A determined value for J  will only yield 

the correct value for DOC  if the same units were used for 
FC  and 

TC  both when calculating σ  and ( )TF CC + . 

Throughout this paper metric units are used, with 
FC  in dollars per kilogram and 

TC  in dollars per second. Since the 

studied aircraft has a 
FC  of 1.15 US$/kg and a 

TC  of 0.0539 US$/s, the associated value of σ  that should result in the 

minimum cost is 0.9552. 
 

5. OPTIMIZATION TECHNIQUES 
 
The problem of optimizing a flight segment consists basically in selecting a combination of flight speed and altitude 

that yields a minimum value for J  within the aircraft’s operational envelope. The flight profile used in this paper is a 
very typical case, consisting of a climb at a constant calibrated airspeed (with engines set to maximum climb power), a 
cruise at a constant altitude and variable speed (set through adjustments in power) and a descent at a combination of 
constant vertical speed and calibrated airspeed flown with engines at idle power. 

 
5.1. Climb Segment 

 
The cost factor associated with an entire flight segment can be determined by solving Eq. (18) for the appropriate 

segment: 
 

( ) TmJ f ⋅−+⋅= σσ 1  (18) 

 
In order to minimize the cost associated with a climb it is necessary to minimize the value of J  associated with it, 

by selecting an appropriate climb speed. It is important to note that climbs performed at different speeds will result in 
different flight distances – lower airspeeds tend to result in steeper and therefore shorter climbs. As a result, the values 
for J  corresponding to each climb speed cannot be compared directly. For this purpose, it is necessary to append a 
cruise segment at the end of the analyzed climb in order to force the aircraft to fly the same distance, regardless of the 
climb length (as shown in Fig. 2) (Boeing, 1989). 

 

 
 

Figure 2. Analyzed climb profiles (speeds are for illustration purposes only) 
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Consequently, the goal is to find a climb speed that minimizes the sum of the cost factors associated with the climb 

itself and its matching cruise segment: 
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The speed used in climb has to be within a certain range. On the lower boundary there is the stall speed (

SV ), 

dictated by maximum 
LC . Typically a safety margin is used over that value, and in this paper the minimum speed is 

defined as 
SV⋅3.1 . The high boundary speed is also very important: because the goals of the optimization are basically 

reducing time and fuel, the process tends to converge to very large numbers, since more speed means less time and 
consequently less fuel burn. However, larger speeds also mean shallower climbs, and so it is necessary to define a 
maximum airspeed that actually allows the aircraft to reach the top of climb at an acceptable climb rate. In this paper 
the maximum climb speed is defined as the speed where at least 1.524 m/s (300 ft/min) can be sustained throughout the 
climb segment, limited by VMO. 

 
5.2. Cruise Segment 

 
Assuming that the aircraft flies a unitary distance, the flight time can be expressed by: 
 

VT 1=  (20) 

 
The cost factor per unitary distance can then be found by integrating Eq. (17) and substituting Eq. (20) into it: 
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Then a given combination of altitude and speed that minimizes the value of J  can be found. Assuming gmL ⋅= , 

LC  and consequently 
DC  can be determined. Since DF = , the propulsive model can be used to find the value of 

•

fm  

corresponding to F . 
The chosen value for cruise speed is also restricted by lower and upper boundaries. Besides the aerodynamic and 

structural limitations (
SV⋅3.1  and VMO), speeds should also be checked if they are physically feasible, since the 

powerplant has limitations on how much (and how little) thrust can be provided. 
 

5.3. Descent Segment 
 
The optimization of the descent is identical to the one for the climb. In practice, the results of the process tend to 

exhibit very steep descent profiles, since these take the least amount of time and consequently burn less fuel. However, 
the descent rate is normally limited either by pressurization systems limitation or human comfort (in case of 
unpressurized aircraft). As a consequence there is often little or no room of optimization in the descent phases, and it is 
customary to adopt a constant calibrated airspeed or vertical speed that is suitable for the aircraft. 

 
6. RESULTS 

 
The optimization methods previously described were applied onto a sample mission, consisting in flying a distance 

of 926 km (500 NM) carrying a 2000 kg payload. 
The climb was performed at a constant calibrated airspeed from sea level to the cruise altitude. Cruising was 

performed at a constant altitude (with values constrained to multiples of 304.8 m (1000 ft)) and variable airspeed. The 
descent was flown at a constant rate of -15.24 m/s (-3000 ft/min) at altitudes above 3048 m (10000 ft) and at a constant 
calibrated airspeed of 97.7 m/s (190 KCAS) at and below 3048 m. Fuel reserves were considered for a two-hour holding 
pattern. 

All simulations were repeated for values of σ  spanning from 0.0 to 1.0 in intervals of 0.1, with addition of 
955.0=σ  where the minimum cost was expected. 
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Table 2. Optimized speeds and altitudes 
 

  climb speed cruise altitude average cruise speed 
σ (m/s CAS) (KCAS) (m) (ft) (m/s) (KT) 

0.0 99.3 193 3353 11000 136.0 264.3 
0.1 99.8 194 3658 12000 136.0 264.3 
0.2 99.3 193 3658 12000 136.0 264.3 
0.3 105.5 205 5182 17000 135.1 262.7 
0.4 99.3 193 6096 20000 134.3 261.1 
0.5 95.2 185 6706 22000 133.6 259.7 
0.6 88.5 172 7620 25000 132.1 256.7 
0.7 83.9 163 8230 27000 130.7 254.1 
0.8 83.9 163 8230 27000 130.7 254.1 
0.9 83.9 163 8230 27000 130.7 254.1 

0.955 81.3 158 8230 27000 127.5 247.9 
1.0 74.6 145 8230 27000 110.1 214.0 
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Figure 3. Optimized mission vertical profiles 
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Table 3. Optimized mission costs 
 

 cost (US$) 
σ 

fuel (kg) 
time 

(min)  CF.F CT.T DOC  
0.0 1022.9 116.7 1175.90 377.44 1553.34 
0.1 994.8 116.9 1143.60 378.09 1521.69 
0.2 994.7 116.9 1143.48 378.09 1521.57 
0.3 878.0 117.8 1009.33 381.00 1390.33 
0.4 804.7 118.6 925.06 383.59 1308.65 
0.5 761.2 119.4 875.06 386.18 1261.23 
0.6 702.9 121.0 808.04 391.35 1199.39 
0.7 669.1 122.5 769.18 396.20 1165.38 
0.8 669.1 122.5 769.18 396.20 1165.38 
0.9 669.1 122.5 769.18 396.20 1165.38 

0.955 660.0 125.1 758.72 404.61 1163.33 
1.0 639.1 141.3 734.69 457.01 1191.70 
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Figure 4. Optimized mission costs 
 

7. CONCLUSIONS 
 
Lower optimal cruise altitudes were found for lower values of σ . For 0.0=σ , where time is the critical cost-

related variable, an altitude of 3353m was obtained – the maximum altitude where the engines can sustain maximum 
power. For higher values of σ , when fuel costs begin to play a bigger role, progressively higher altitudes were found, 
with the operational ceiling being reached for 7.0≥σ . 

Cruise speeds tended to be higher when σ  nears zero. With the exception of 995.0=σ  and 0.1=σ , cruise was 
performed at maximum engine power, hence making speed a function of altitude. With 0.1=σ  a much lower speed 
was obtained: cruise was performed at the maximum range speed, where fuel use is minimized. 

Higher values of σ  resulted in steeper climbs: when fuel is more critical it is better to start cruising sooner. For σ  
closer to 0.0 climbs tended to be less steep, since this allows for the aircraft to develop higher speeds. 

Operating costs due to fuel decreased from US$1175.90 to US$734.69 as the considered value for σ  spanned from 
0.0 to 1.0. Costs due to time had the exact opposite behavior, increasing from US$377.44 to US$457.01. The direct 
operating cost, which is the sum of both costs due to fuel and time, as expected reached its minimum when 995.0=σ  
with a value of US$1163.33. Flying with a profile that minimizes only time ( 0.0=σ ) or fuel ( 0.1=σ ) cost 
respectively US$1553.34 (33.52% more) and US$1191.70 (2.44% more). 
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The presented results emphasize the importance of adopting an optimized flight profile considering the actual 

importance of the fuel and time related costs. While the substantial increase in operating costs generated by flying at the 
maximum speed regime does not surprise, it is important to acknowledge that the added cost by flying in minimum fuel 
regime is by no means negligible: in fact, numbers as small as one percent are very representative in modern airline 
operations. It is convenient to remind that the studied aircraft is meant for military operations and thus features a 
relative small importance of time on total costs – in other types of operation time is usually a bigger factor – and this 
helped to bring the optimal minimum cost solution closer to minimum fuel. However, the tendency of rise in fuel costs 
should bring the relative importance of time and fuel closer to the values used in this paper. 
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