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Abstract. This work presents the buckling and fundamental frequency simultaneous optimization of an aeronautical 
composite plate. The Powell’s method is used aiming at getting the best design for the applied compressive loading. 
The design variables are the lamina orientation angles. However, buckling and fundamental frequency are not convex 
functions of these variables. Therefore, it is necessary to include lamination parameters in the optimization 
formulation to obtain a convex problem. The proposed procedure guarantees that the global maximum of the objective 
function is obtained. 
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1. INTRODUCTION  
 

The interest in laminated composite materials by aeronautical industry is due to their high modulus of elasticity and 
low mass density. Since these type of materials are composed of a certain number of laminas with arbitrary angular 
orientation, the optimization strategies for composite structures generally use as design variables the lamina thicknesses 
and/or the lamina angular orientations. Furthermore, a common optimization goal for aeronautical structures is to 
maximize independently either the buckling load (Faria, 2002) or the fundamental frequency (Faria and Almeida, 2006; 
Topal, 2009). The buckling and fundamental frequency simultaneous optimization makes possible to design robust 
structures statically and dynamically. Among the techniques used for multicriteria optimization are the minimax 
strategy (Dem’Yanov and Malozemov, 1974) and Pareto (Grierson, 2008).  

The structure chosen for optimization in this work is a composite plate under edge compressive loads as represented 
in Fig. 1. In this type of structures, buckling and natural frequencies are closely correlated. That is, if the buckling load 
is optimized the fundamental frequency also gets better. In this special situation, Powell’s method (Vanderplaats, 1984) 
can be used for the multicriteria optimization and by the end of the process it will be possible define which is the 
dominant criterion.  

The design variables in this work are the lamina angular orientations. Since buckling and fundamental frequency 
are not convex functions of the laminas angular orientations, the present work uses a general approach developed by 
Foldager et al (1998) that makes possible to find the global optimum. Section 2 presents the buckling and fundamental 
frequency analytical solution for composite plates.  

The optimization strategy includes Powell’s method and Foldager et al (1998) approach. The complete optimization 
process is described in Section 3.  

 
 
 
 
 
 
 
 
 
 

 
Figure 1 – Plate under compressive loads. 
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2. BUCKLING AND FUNDAMENTAL FREQUENCY ANALYTICAL SOLUTION 

 
The buckling and fundamental frequency analytical solutions presented in Jones (1975) are given in Eq. (1) and (2), 

respectively. The fundamental frequency solution considering stress stiffness is given in Eq. (3). It was derived from 
Jones (1975): 
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where λ is the buckling load and ω is the fundamental frequency; a and b are the plate horizontal and vertical 
dimension; m and n are the number of buckle half wavelengths in the x- and y-directions, respectively. The smallest 
value of λ occurs when n = 1 and for small plate aspect ratios (a/b < 2.5) the plate buckles into a single half-wave in the 
x-direction. In this way it is considered that m = n = 1. D11, D22, D12, D66 are the laminate stiffness. 

The stiffness elements of matrices [A], [B] and [D] can be given in terms of the angular orientation in Eq. (4) or in 
terms of lamination parameters in Eq. (5). In the first case the stiffness matrix in structural coordinates ⎡ ⎤⎣ ⎦Q  is used and 

in the second it is used the matrix of invariants [U] and lamination parameters [1,2,3,4]
Aξ , [1,2,3,4]

Bξ  and [1,2,3,4]
Dξ . 
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where zk is the lamina thickness, and: 
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where t is the plate thickness. 
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3. OPTIMIZATION PROCESS 
 
The optimization process includes the Powell’s method and the Foldager et al (1998) approach. The Powell’s 

method is used to find the lamina angular orientation that yields maximum buckling load and fundamental frequency. 
However, since buckling and fundamental frequency are not convex functions of the angular orientation, the maximum 
value found can be local. In order to assure that the obtained maximum is global, an optimization process that includes 
lamination parameters and an objective function proposed by Foldager et al (1998) is performed. This approach is based 
on the assumption that the optimization problem where the laminate stiffness matrices [A], [B], and [D] are expressed in 
terms of lamination parameters is convex (Foldager et al, 1998). The optimization process can be summarized in the 
following steps: 

 
1) Define some initial design variables {θ}initial. In this work the design variables are the laminas angular 

orientations.  
 

2) Using Powell’s method, find a {θ}optm set that maximizes the objective functions: 
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In this step it is important to explain that the buckling and fundamental frequency values should be normalized so 

that a proper comparison can be done. In this work the buckling load is normalized by the applied load and the 
fundamental frequency is normalized by some minimum frequency design requirements. When the buckling normalized 
value is less than 1, it means that the applied load is greater than the buckling load. If this happens the structure lost its 
stability and the linearized fundamental frequency tends to 0.0 Hz. 

 
3) Using the {θ}optm in previous step and Eq. (6) compute the equivalent lamination parameters:  
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4) Using the Powell’s method, minimize the Foldager et al (1998) internal objective function:  
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This internal objective function considers the lamination parameters corresponding to {θ}optm, that are defined by 

{ξ}*, the lamination parameters corresponding to the internal Powell’s iteration ξ({θ}), and the lamination parameters 
sensitivities { }*F ξ∂ ∂ . By the end of this internal optimization process, it is found a {θ}new set that minimizes the 
internal objective function. The equations of Foldager et al (1998) approach necessary to define the function f in Eq. 
(10) are repeated in this work in Eq. (11) to (15).  
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where NLP is the number of lamination parameters. 
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The minimization of function f1 implies minimization of the distance between the given set of lamination 

parameters {ξ}* and those ξ({θ}) calculated from the design variables {θ}. The second function, f2, forces the 
minimization process to favor lay-ups with a lower value of the objective function f. The internal objective 
minimization goal is to find a new set of design variables ({θ}new) that yields a better value of the objective function. 
This tends to take the optimization process away from a local maximum.  

The sensitivity computation is an important stage on the optimization process and in this work it is done by chain 
rule combined with finite difference: 
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5) Using the resulting {θ}new, compute F({θ}new). If F({θ}new) > F({θ}optm), the process should return to step 1 with 

{θ}initial = {θ}new. 
The process is repeated until a F({θ}new) > F({θ}optm) is not found. When this happens {θ}optm is taken as the global 

optimum. 
 
4. NUMERICAL RESULTS 

 
The structure chosen for the optimization is the plate represented in Fig. 1. This structure and a similar optimization 

process was used in a previous work (Lariú, 2008), but only for buckling optimization. It is a crossply laminated 
rectangular plate with initial stacking sequence of [(0/45/90)]s. The horizontal edge of the plate has dimension a = 0.3 m 
and vertical dimension b = 0.24 m. The lamina thicknesses are considered constant and equal to 2.54 mm. The material 
properties are given in Table 1. 

 
Table 1 – Material properties. 

  
Property Value 

Longitudinal modulus of elasticity, E1 (GPa) 207 
Transverse modulus of elasticity, E2 (GPa) 20.7 
In-plane and transverse shear modulus, G12 and G13 (GPa) 6.9 
Transverse shear modulus, G23 (GPa) 6.9 
In-plane Poisson’s ratio, ν12 0.3 
Density, ρ (kg/m3) 1580 

 
The optimization process considers three different magnitudes of applied compressive loads and three different 

values of minimum frequencies design requirements. These values are also used as normalization values (ω0) for the 
frequencies. The combination of the three load magnitudes with the three frequencies requirements results in nine 
different optimization analyses. The load magnitudes and minimum frequency requirements are given in Table 2: 
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Table 2 – Load magnitude and minimum frequency value requirement. 
 

Nx (kN/m) 1200 7200 14400 
50 50 50 
100 100 100 ω0 (Hz) 
150 150 150 

 
The optimization results are given in Tables 3, 4 and 5. 
 

Table 3 – Optimization results for Nx = 1200 (kN/m). 
 

 ω0  = 50 Hz ω0 = 100 Hz ω0 = 150 Hz 
 Initial Optimum Initial Optimum Initial Optimum 

[θ1/θ2/θ3]s [0/45/90]s [51.88/51.79/51.87]s [0/45/90]s [51.45/51.50/50.35]s [0/45/90]s [51.39/51.86/45.67]s

λ/Νx 11.88 20.37 11.88 20.37 11.88 20.35 
ω/ω0 24.54 32.75 12.27 16.37 8.18 10.91 
 
Examining Table 3 it is possible to see that when Nx = 1200 kN/m  and ω0 = 50 Hz the dominant criterion is 

buckling. When ω0 = 100 Hz the dominant criterion is buckling at the beginning and frequency by the end of the 
optimization process. When ω0 = 150 Hz the dominant criterion is frequency. For ω0 = 50 and 100 Hz the optimal point 
is practically the same. However, when ω0 = 150 Hz, θ3 orientation is different from the other minimum frequency 
requirement values. Furthermore, buckling was slightly decreased by optimization procedure when frequency is the 
dominant criterion. 

 
Table 4 – Optimization results for Nx = 7200 (kN/m). 

 
 ω0  = 50 Hz ω0 = 100 Hz ω0 = 150 Hz 
 Initial Optimum Initial Optimum Initial Optimum 

[θ1/θ2/θ3]s [0/45/90]s [51.90/51.92/51.78]s [0/45/90]s [51.90/51.92/51.78]s [0/45/90]s [51.90/51.92/51.78]s

λ/Νx 1.98 3.39 1.98 3.39 1.98 3.39 
ω/ω0 18.04 28.21 9.02 14.10 6.01 9.40 
 
Examining Table 4 it is possible to see that when Nx = 7200 kN/m and ω0 = 50, 100 and 150 Hz the dominant 

criterion is buckling and the optimal angular orientation is exactly the same. In these cases buckling is strongly 
dominant and the frequency optimization is just a consequence of the optimization process. 

 
Table 5 – Optimization results for Nx = 14400 (kN/m). 

 
 ω0  = 50 Hz ω0 = 100 Hz ω0 = 150 Hz 
 Initial Optimum Initial Optimum Initial Optimum 

[θ1/θ2/θ3]s [0/45/90]s [53.27/50.37/46.52]s [0/45/90]s [53.27/50.37/46.52]s [0/45/90]s [53.24/50.37/46.49]s

λ/λ0 0.99 1.69 0.99 1.69 0.99 1.69 
ω/ω0 0 21.49 0 10.75 0 7.16 
 
Examining Table 5 it is possible to see that the applied load (Nx = 14400 kN/m) results in a buckled initial structure. 

However, the optimal structure supports loading 69% greater than the one applied. When ω0 = 50 and 100 Hz the 
optimal structure is the same. When ω0 = 150 Hz the optimal angular orientation is slightly different. This indicates that 
the extreme condition of loading and high minimum frequency value requirement impose some difficulties for the 
optimization process that did not found the exact optimal point but a very close one.  

  
5. CONCLUSION 

 
The present work shows the buckling and fundamental frequency optimization of a composite plate under 

compressive loads. In all cases presented the optimization process has succeed, even when the initial structure was 
buckled. The optimization process is simplified by the fact that, for this structure under this type of loading, buckling 
and fundamental frequency have similar behaviors. It means that if the buckling load is improved, the fundamental 
frequency also is. However, it should be emphasized that this is applicable only for this particular case. In future works 
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more realistic loading representation will be included. Also, standard techniques for multicriteria optimization such as 
minimax strategy and geometrically more complex structures shall also be analyzed. 
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