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Abstract: The objective of this work is to present simulations for heat transfer in a porous reactor, in which both the 

permeable bed and the working fluid moves with respect to the fixed bounding walls. For simulating the flow and heat 

transfer, a two-energy equation model is applied in addition to a mechanical model. Transport equations are 

discretized using the control-volume method and the system of algebraic equations are relaxed via the SIMPLE 

algorithm. For both the solid and the fluid phase, temperature distribution are presented as a function of the particle 

diameter, medium permeability, solid-to-fluid thermal conductivity ratio and solid-to-fluid velocity ratio. 
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1. INTRODUCTION  

 

There is an increasing interest in the use of a moving bed technology as the separation of chemical compounds, 

recuperation of petrochemical processes, drying of grains and seeds, channel of moving bed for the removal of organic 

matter in the affluent, etc. The advantages of using moving bed are low investment, low energy consumption, low 

maintenance with mechanical equipment and improvement process performance, such as reducing the moisture content 

in agricultural products, for example. Another important technology that can benefit from the studies herein is a moving 

bed composed of pellets. Pellet techniques are used for various purposes, among them one can mention the pelletization 

of iron ore and biomass use. 

With respect to pelletization of iron ore, Parisi and Laborde (2004) and Negri et.al. (1991) presented a study about 

the direct reduction of iron oxide in a countercurrent reactor in a moving bed. Also within this context, Valipour 

et.al.(2006) developed a mathematical model to simulate grain kinetics and thermal behavior of a pellet of porous iron 

oxide. Their study considered chemical reactions with a mixture of hydrogen, carbon monoxide, carbon dioxide and 

water vapor. Further, Valipour and Saboohi (2007a) presented a mathematical model to simulate the multiple 

heterogeneous reactions with a countercurrent complex set of thermal phenomena and physical-chemical modeling in a 

moving bed of porous pellets on reactor. Valipour and Saboohi (2007b) described a model to predict countercurrent 

flow in a cylindrical reactor in which pellets of iron ore went through a gas mixture. 

Henda and Falcioni (2006) described a thermal performance of a pre-heater that consists of a moving bed of pellets 

of nickel in concurrent flow with a gas, using both one and two equations energy models. Nakayama and Kuwahara 

et.al. (2001) in their paper presented the exact solution of energy equations for two fundamental cases, i.e. one-

dimensional porous plate with internal heat generation within the solid and the thermally developing unidirectional flow 

through a semi-infinite porous medium, which was used to validate the problem of heat transfer between fluid and solid 

phases in a laminar flow channel. 

The present study is concerned with simulation of energy transport in a moving bed though which a laminar flow 

occurs. Energy equations for both phases are applied. 

 

2. MACROSCOPIC MODEL FOR MOVING BED  

 

A macroscopic form of the governing equations is obtained by taking the volumetric average of the entire equation 

set. In this development, the porous medium is considered to be rigid, fixed and satured by the incompressible fluid. As 

mentioned, derivation of this equation set is already available in the literature (Pedras and de Lemos 2001a; Pedras and 

de Lemos 2001b; Saito and de Lemos 2005; de Lemos 2006) so that details need not to be repeated here. Nevertheless, 

for the sake of completeness, the final laminar form of the equations is here presented: 

 

Continuity: 0
D

u                                                                                                                                                  (1) 

 



V I  C o n g r e sso  N a c i o n a l  d e  E n g en h ar i a  M e c ân i c a ,  18  a  2 1  d e  A g o st o  2 0 10 ,  C am p i n a  G r an d e  -  P ar a í b a  

 

Momentum: 

  
drag Relative

relrelF

relD

iDDD

K

c

K
p

t





















 uu
uu

uuu ||
)()( 2 





                                                   (2) 

 

where the last two terms in Eq. (2) represent the Darcy and Forchheimer contributions. The symbol K  is the porous 

medium permeability, 
F

c  is the form drag or Forchheimer coefficient, i
p  is the intrinsic average pressure of the fluid, 

D
u  is the Darcy velocity vector, relu  is the relative velocity based on total volume,   is the density,   is the fluid 

dynamic viscosity and   is the porosity of the porous medium. 

For a moving bed, only cases where the solid phase velocity is kept constant will be considered here, a moving bed 

crosses a fixed control volume in addition to a flowing fluid, which is not necessarily moving with a velocity aligned 

with the solid phase velocity. The steps below show first some basic definitions prior to presenting a proposal for a set 

of transport equations for analyzing such systems. 

A general form for a volume-average of any property  , distributed within a phase i  that occupy volume 
i

V , can 

be written as Gray and Lee (1977) , 
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In the general case, the volume ratio occupied by phase i  will be VV
i

i  / . 

If there are two phases, a solid si   and a fluid phase fi  , volume average can be established on both regions. 

Also, 
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fs
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and for simplicity of notation one can drop the superscript “f” to get  1s . 

As such, calling the instantaneous local velocities for the solid and fluid phases, 
s

u  and u , respectively, one can 

obtain the average for the solid velocity, within the solid phase, as follows, 
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with, in turn, can be related to an average velocity referent to the entire REV as, 
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A further approximation herein is that the porous bed is kept rigid and moves with a steady average velocity 
s

u . 

Both velocities can then be written as, 
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A relative velocity is then defined as, 

 

sDrel
uuu                                                                                                                                                                 (8) 

 

Temperatures for the fluid and solid phase are governed by, 
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where pc  is the specific heat, and 
i

f
T , 

i

sT , s̀K , 
i

a  and 
i

h  are the fluid and solid temperatures, the conductive 

tensor, the interfacial area and interfacial heat transfer coefficient, respectively see Saito and de Lemos (2006). 

Non-dimensional temperatures for the solid and fluid are defined as: 
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TT

TT
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where the subscripts fs,  stands for the solid and fluid phases, respectively, and “max” and “min” refers to both 

temperature maximum and minimum of either phase. 

 

3. RESULTS AND DISCUSSION 

 
The problem under investigation is a laminar flow through a channel completely filled with a moving layer of a 

porous material, as shown in Fig. (1). The channel shown in the Fig. (1) has length and height given by L and H, 

respectively. The porous matrix moves with constant velocity su . 

The fluid and solid phases are given different temperatures at the inlet. 

    

 
 

Figure 1. Porous bed reactor with a moving solid matrix. 

     

3.1. Validation  

 

Figure (2) shows values for the longitudinal non-dimensional temperature profiles compared with the analytical 

solution by Nakayama and Kuwahara et.al. (2001), written as,  
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with the dimensionless coordinate given by:  

 

ii
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                                                                                                                                                  (14) 

 
where, G  is the tortuosity parameter, 

xx
K  is the axial component of thermal dispersion tensor, 

eff
K  is the axial 

component of effective thermal conductivity,   is the negative real root, Pe  is the Peclet number based on Darcian 
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velocity,   is the thermal conductivity ratio of solid to fluid 

fs
kk / . The values of parameters were calculated 

according to the expressions found in Nakayama and Kuwahara et.al. (2001), as shown in Tab. (1). 

 

Table 1. Properties and parameters considered in the investigation 

 
      G  

feff
kK /  fxx

kK /  

0.625 40 0.4 -0.013219 4.29293 50 

 

The parameters used by Nakayama and Kuwahara were: porosity 4.0 , Peclet number 100
d

Pe , velocity ratio 

0/ Ds uu  and thermal conductivity ratio 40
f

s

k

k
 . 

The properties of solid and fluid such that 40/ 
fs

kk  are presented in Tab. (2). 

 

Table 2. Physical properties of solid and fluid 

 

Fluid: Water Vapour 

)/( mKWk
f

 )/( 3mkgf  )/( kgKJc
pf

 )/( 2mNs  )(KT  

0.0345 0.4345 1986.8 7101.173   507.5 

Solid: Silicon Dioxide 

 

)/( mKWk
s

 )/( 3mkg
s

  )/( kgKJc
ps

 - )(KT  

1.38 2220 745 - 300 

          
It is clearly seen from Fig. (2) an excellent agreement between the numerical solution of Eqns. (9)–(10) and the 

analytical solution given by Eqns. (12)–(13). 

 

 
 

Figure 2. Comparison of dimensionless temperature profile 
f

  and 
s

  the present study with those presented in 

Nakayama and Kuwahara et.al. (2001). 

 

3.2. Effect of Reynolds Number, 
D

Re   

 

Figure (3) shows values for the longitudinal non-dimensional temperature profiles as a function of 
D

Re . Fig. (3) 

indicates that the cold porous structure is heated up as the hot fluid permeates through it. Also, the equilibrium 

temperature rises as more energy in convected into the system as a results of increasing the Reynolds number. The axial 

length needed for reaching the equilibrium value is further reduced as 
D

Re  is increased due to the relative velocity 

between phases, which promotes heat transfer between the solid matrix and the fluid. 
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Figure 3. Non-dimensional temperatures as a function of 
D

Re  for -3102.5Da  , 0.6 , 40/ 
fs

kk , 

3.5109/ 
fs

 , 86.1915)/()( 
fpsp

cc  , 0/ Ds uu . 

 

3.3. Effect of Permeability K  

 

Figure (4) presents the effect of particle diameter 
p

d  on the axial temperature profiles. For a give particle diameter, 

permeability is given by, 
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leading to a Darcy number 2/ HKDa   where H  is the height of channel. The Reynolds number and the porosity are 

kept constant for all curves. It is observed in Fig. (4) that for a small permeability, as a result of a decrease of particle 

diameter, a larger interfacial heat transfer area promotes heat transfer between phases and reduces the length necessary 

for thermal equilibrium to be reached. 
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Figure 4. Non-dimensional temperatures as a function of Darcy number Da  for 6.0 , 500
D

Re  , 40/ 
fs

kk , 

3.5109/ 
fs

 , 86.1915)/()( 
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3.4. Effect of Slip Ratio 
Ds

uu /  

 

Figure (5) shows temperature profiles for a moving bed, as a function of 
Ds

uu / . It is observed that the higher the 

value of 
Ds

uu / , the greater is the temperature difference between fluid and solid phases. By decreasing the relative 

velocity between phases, more axial length is needed for the equilibrium temperature to be reached. Increasing the ratio 

Ds uu / , the solid, with a lower temperature, brings down the equilibrium temperature of the system. When the solid 
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velocity approaches that of the fluid, 95.0/ Ds uu , exchange of heat between phases is mostly governed by 

conduction, requiring then a longer axial length for thermal equilibrium to be established. 
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Figure 5. Non-dimensional temperatures as a function of slip ratio Ds uu /  for 6.0 , 4101 Da , 50
D

Re , 

40/ 
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kk , 1/ 
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3.5. Effect of Ratio 
fs

kk /  

 

Figure (6) shows the effect of ratio 
fs

kk /  on longitudinal non-dimensional temperature profiles for a moving bed. 

It is noted that the higher the ratio value 
fs

kk / , the longer is the length needed for thermal development since heat is 

transported only by conduction within the solid causing its temperature distribution to be more connected to the inlet 

temperature. With increasing the ratio 
fs

kk / , the lower solid temperature brings down the equilibrium temperature of 

the system. On the other hand, by decreasing the thermal conductivity ratio 
fs

kk /  between phases, less axial length is 

needed for the equilibrium temperature to be reached. 
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Figure 6. Non-dimensional temperatures as a function of slip ratio 
fs

kk /  for 6.0 , 4101 Da , 50
D
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4. CONCLUSIONS 

 
Numerical solutions for laminar flow in a moving bed porous were obtained for different Reynolds number, 

porosity, permeability and solid-to-fluid thermal velocity ratio. Governing equations were discretized and numerically 

solved. Good agreement was obtained when comparing the results herein with those obtained from Nakayama and 

Kuwahara et.al. (2001). For the same problem, varying parameters such as Reynolds, porosities, speed ratios and 

conductivity, show an excellent agreement with the results presented in de Lemos and Saito (2008), where was found 

that increasing the speed of the solid relative to the fluid speed reduces the interfacial drag forces and the transport of 

energy between the phases are mainly due to conduction. The results presented here have a wide application to 

problems involving engineering equipment that could be identified as a moving bed porous.  

  

5. ACKNOWLEDGEMENTS  

 
The authors are thankful to CNPq, Brazil, for their financial support during the course of this research. 

 

 

6. REFERENCES  

 
de Lemos M.J.S., 2006, Turbulence in Porous Media: Modeling and Applications, Elsevier, Amsterdam. 

de Lemos M.J.S, Saito M.B., 2008,  Computation of turbulent heat transfer in a moving porous bed using a macroscopic 

two-energy equation model, International, Communications in Heat and Mass Transfer 35 1262–1266. 

Gray W.G., Lee P.C.Y., 1977 , On the theorems for local volume averaging of multiphase system, International Journal 

of Multiphase Flow 3 333–340. 

Henda R, Falcioni D.J., 2006, Modeling of heat transfer in a moving packed bed: Case of the preheater in nickel 

carbonyl process, JOURNAL OF APPLIED MECHANICS –ASME, Vol. 73(1), pp. 47-53.  

Nakayama A., Kuwahara F., Sugiyama M., Xu G., 2001 , “A two energy equation model for conduction and convection 

in porous media”, International Journal of Heat and Mass Transfer, Vol. 44, pp. 4375 – 4379.   

Negri E. D., Alfano O. M., Chiovetta M. G., 1991, Direct Redution of Hematite in a Moving-Bed Reactor: Analysis of 

the Water Gas Shift Reaction Effects on the Reactor Behavior, American Chemical Society, Vol. 30, pp. 474-482. 

Parisi, D.R., Laborde, M.A., 2004, Modeling of counter current moving bed gas-solid reactor used in direct reduction of 

iron ore, Chemical Engineering Journal, 104, 35-43.  

Pedras M.H.J., de Lemos M.J.S., 2001a, Macroscopic turbulence modeling for incompressible flow through 

undeformable porous media, International Journal of Heat and Mass Transfer 44 (6) 1081-1093. 

Pedras M.H.J., de Lemos M.J.S., 2001b, Simulation of turbulent flow in porous media using a spatially periodic array 

and a lowRe two-equation closure, Numerical Heat Transfer-Part. A. 39 (1) 35-39. 

Saito M.B., de Lemos M.J.S., 2005, “Interfacial heat transfer coefficient for non-equilibrium convective transport in 

porous media”, International Communications in Heat and Mass Transfer, Vol. 32 (5), pp. 667–677. 

Saito M.B., de Lemos M.J.S., 2006 , “A correlation for interfacial heat transfer coefficient for turbulent flow over an 

array of square rods”, Journal of Heat Transfer, Vol. 128, pp. 444–452. 

Valipour M.S., Hashemi M.Y.M., Saboohi Y., 2006, Mathematical modeling of the reaction in an iron ore pellet using a 

mixture of hydrogen, water vapor, carbon monoxide and carbon dioxide: an isothermal study, ADVANCED 

POWDER TECHNOLOGY, Vol. 17 (3), pp. 277-295.  

Valipour M.S., Saboohi Y., 2007a, Numerical investigation of nonisothermal reduction hematite using Syngas: the shaft 

scale study, Modelling Simul. Mater. Sci. Eng., Vol. 15, pp. 487–507. 

Valipour M.S., Saboohi Y., 2007b, Modeling of multiple noncatalytic gas-solid reactions in a moving bed of porous 

pellets based on finite volume method, HEAT AND MASS TRANSFER, Vol. 43 (9), pp. 881-894. 

 


