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Abstract. Materials which exhibit piezoelectric behavior generate an electrical field in response to a mechanical 
deformation or alternatively undergo a mechanical deformation in response to an applied electrical field. This work 
presents the development of unit cell numerical models of 1-3 periodic composites, with piezoelectric fibers made of 
PZT embedded in a non-piezoelectric matrix. The common approach for estimating the macro-mechanical properties 
of 3D piezoelectric fiber composites is carried out by the unit cell approach, also called a representative volume 
element (RVE), which captures the major features of the underlying micro-structure. The main idea of this method  
consisting on evaluating a globally homogeneous medium equivalent to the original composite, where the strain 
energies stored in the two systems are approximately the same, with special emphasis placed on the formulation of 
suitable boundary conditions. The boundary conditions allow the simulation of all modes of the overall deformation 
arising from any arbitrary combination of mechanical and electrical loading. In the first instance, the unit cell is 
applied to prediction of the effective material coefficients of the transversely isotropic piezoelectric composite with 
circular cross section fibers. The numerical results(performed with the software ABAQUS®) are compared with 
methods reported in the literature and also to results previously published by the authors, in order to validate the 
proposed methodology. The second step of this work consist on applying the methodology to estimate the properties of 
composites with square cross section fibers (MFC – Macro Fiber Composites). The square arrangements of 
unidirectional piezoelectric fiber composites were used.  These last models will be used to support further experimental 
tests of composites with active layers based in MFC fibers.  
 
Keywords: Piezoelectric Fiber Composite, Active Fiber Composite (AFC), Macro Fiber Composite (MFC), Unit Cell 

 
 
1. INTRODUCTION 

 
With the development of information industry and the appearance of smart materials and smart structures, it 

becomes more and more important to study the mechanical-electric coupled problems. Since piezoelectric composite 
materials are widely utilized in engineering, much research work has been done in the analysis and prediction of the 
effective electroelastic moduli of piezoelectric composite materials. Because, these analysis and prediction are based on 
mesomechanics, i.e., the problem consists on a piezoelectric inclusion in an infinite matrix. Piezoelectric materials have 
the property of converting electrical energy into mechanical energy, and vice versa. This capability makes possible the 
use of these smart materials as either sensors or actuators in several industrial fields, for example: noise and vibration 
control; acoustic speakers; precision position control and Systems of Health Monitoring (SHM). Thus, several rearch 
works have been developed, using analytical, numerical, and experimental or hybrid approaches. Chan and Unsworth 
(1989) as well as Smith and Auld (1991) were not capable of predicting the response to general loading, just in terms of 
loading cases applied by themselves. Dunn and Taya (1993) employed micro-mechanical theory coupled to the electro-
elastic solution and studied ellipsoidal inclusions into an infinite piezoelectric medium. Rodriguez-Ramos et al. (2001) 
and Bravo-Castillero et al. (2001) applied the asymptotic homogenization to composites (piezoelectric or not) with 
fibers in square arrangement.  
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Finite element techniques using a representative volume element (RVE - unit cell) were employed by Gaudenzi 
(1997) to obtain the properties for piezo-composite patches applied on metallic plates. Poizat and Sester (1999) showed 
how to obtain two effective piezoelectric coefficients (longitudinal and transverse). Petterman and Suresh (2000) used 
unit cell models applied to 1-3 piezo-composites. Paradies and Melnykowycz (2007) studied the influence of 
interdigital electrodes over mechanical properties of PZT fibers. 

After that, the research of Kar-Gupta and Venkatesh (2005, 2007a and 2007b) was about the influence of fiber 
distribution in 1-3 piezoelectric composites considering both, fiber and matrix, with piezoelectric properties. However, 
analytical techniques presented were not able to evaluate the influence of fiber distribution. Therefore, finite element 
analysis were presented and discussed by other researchers. Berger et al. (2005 and 2006) evaluated effective material 
properties of piezoelectric composites using analytical and numerical techniques. Azzouz et al. (2001) improved the 
properties of  a finite element (three nodes aniso-parametric element) to take into account the modeling of AFC (active 
fiber composite) and MFCTM

2. FORMULATION OF THE ELEMENT 

 (macro fiber composite). Tan and Vu-Quoc (2005) presented a solid-shell element 
formulation to model active composite structures considering large deformation and displacements. The element has 
displacement and electrical degrees of freedom. The present authors ensured the efficiency and precision in the analysis 
of multilayer composite structures submitted to large deformation, including piezoelectric layers. Moreno et al. (2009 
and 2010) investigated fibers with the same cross-sectional area (unimodal) and two different periodic fiber 
arrangement: the square arrangement and hexagonal arrangement. In the last paper, it was investigated the influence of 
applied boundary condition on the determination of effective material properties for active fiber composites.  This 
paper, in fact, is a continuation of the last one. Thus, the FEM (Finite Element Method) is used in order to determine the 
effective properties of one ply made of unidirectional fibers from individual properties of the constituent materials 
(fiber and matrix) and composite characteristics. The procedure is based on the modeling of a RVE (unit cell), which is 
analyzed for different loading with different boundary conditions in order to evaluate the effective coefficients of 
transversely isotropic piezoelectric cylindrical and square fiber (1-3 periodic) composites. All analysis are carried out 
using the software ABAQUS®, where two different fiber geometry are studied: circular and square (MFC), both with 
square arrangement. Finally, RVE are chosen specifically for some analysis in order to make possible the use of suitable 
boundary conditions to represent the periodicity of the unit cell. 
 

 
2.1. Piezoelectricity and piezoelectric composites 
 

The elastic and the dielectric responses are coupled in piezoelectric materials where the mechanical variables of 
stress and strain are related to each other as well as to the electric variables of electric field and electric displacement. 
The coupling between mechanical and electric fields is described by piezoelectric coefficients. This paper considers 
piezoelectric materials that respond linearly due to changes in the electric field, electric displacement, or mechanical 
stress and strain, thus, the constitutive response of piezoelectric materials in the linear elastic region is mathematically 
written in form of matrix as: 
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where {T} denotes the stress tensor, {S} denotes the strain tensor, {E} denotes the electric potential field, {D} is the 
electrical displacement field, [C] denotes fourth-order elasticity tensor at constant electric field, [e] is the third-order 
piezoelectric coupling tensor and [ε] is the second-order dielectric tensor at constant strain field. The superscript t 
means the transpose of the matrix. For a transversely isotropic piezoelectric solid, the stiffness matrix, the piezoelectric 
matrix and the dielectric matrix have 11 independent coefficients and applying conditions for 1-3 piezoelectric 
composites, consequently, the constitutive Eq. (1) for the composite can be written in the matrix expanding form as: 
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The effective properties of the composites (subscript eff) can be defined by the average fields in the same form as 
Eq. (1), which can be written in a compact matrix form: 
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It is assumed that the average mechanical and electrical properties of a unit cell are equal to the average properties 

of the particular composite. The average stresses, strains, electric fields and electrical displacements in the RVE are 
defined by: 
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where V is the unit cell volume and the bar over the field component denotes the average value. Using the finite 
element approach, the average values can be post processed by: 
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where V is the volume of the unit cell, nel is the number of elements modeling the unit cell, V(n) is the volume of the n-
th element and T(n), S(n), D(n) and E(n)

2.2. Macro fiber composite 

 are the properties evaluated at the n-th element. 
 

 
The Macro Fiber Composite, developed at the NASA Langley Research Center, offers much higher flexibility and 

induced strain levels than monolithic piezoceramic. This increase of performance results from a laminated, 
piezoceramic fiber-reinforced construction and an interdigitated electrode pattern. The MFC is a laminate with a planar 
actuation device that employs rectangular cross-section, i.e., unidirectional piezoceramic fibers (PZT) are embedded in 
a thermosetting polymer matrix. 
 
2.3. Representative volume element 
 

Figure 1shows a composite with unidirectional fibers in square arrangement with correspondent unit cell (RVE), 
where the Fig. 1(a) shows a circular cross section and Fig. 1(b), a square cross section. 

 

  
(a) (b) 

 
Figure 1. Illustration indicating (a) circular cross section and (b) square cross section of fibers in a matrix 

as well as the corresponding unit cells used for the finite element modeling of 1-3 piezocomposites. 
 

For example, regarding to a square arrangement, the unit cell is formed by the fiber at the center inner a cubic 
portion of matrix as showed in Fig. 2. The Fig. 2 also presents the designation given to the faces of RVE, adopted to 
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help the explanation about loading and boundary conditions. According to its location, the faces of the RVE are 
designated as X+, X-, Y+, Y-, Z+ and Z-. In all analysis the fiber is continuous and orientated along the z-axis. 
 

 
  

Figure 2. Square arrangement notations for surfaces of the unit cell  
 
The microstructure shows locally a repetitive deformation that is modeled by the deformation of a microstructural 

RVE. It is assumed that the representative cell deforms in a repetitive way identical to its neighbors. In an RVE, the 
spatial periodicity conditions follow from compatibility demands with respect to the opposite edges. The demands 
enforce two adjacent RVEs to show identical deformations, while neither overlapping nor separation may occur. 
Considering two opposite point, A and B, and other set of opposite points, C and D, their displacements, ui, respecting 
the periodicity of the RVE can be written in terms of the average unit cell strain (Sij

( )A B A B
i i ij j ju u S x x= + −

) as (Berger et al., 2005): 
 

 (6) 
 

( )C D C D
i i ij j ju u S x x= + −  (7) 

 
The same relations are also valid to the electrical degrees of freedom. Subtracting both equations and considering 

the average Sij is the same in both equations, as well as, (xA – xB) is equal (xC – xD

A C B D
i i i iu u u u− = −

), the constraint equation can be 
rewritten as following, respectively to displacement and electrical potential degrees of freedom. 

 
 (8) 

 
A C B Dϕ ϕ ϕ ϕ− = −  (9) 

 
where φ is the electrical potential correspondent to the node indicated by the superscript index.  

The last two equations represent a parallelism condition between the sides AC and BD. This condition must be 
applied for each pair of nodes in opposite sides of the unit cell (in vertical and horizontal directions) and must be 
repeated along the depth of the cell. In the analysis presented, it is not necessary to specify these conditions for all the 
cases, because sometimes the displacement and electrical boundary conditions already ensures this parallelism 
restriction. It is interesting to avoid the application of this condition, because there is a large number of equations that 
must be input. Automatic procedures to search opposite nodes and applying restrictions must be used. In the loading 
cases involving shear forces this procedure cannot be avoided, and the constraint equations have to be used at the sides 
submitted to the shear loading. 
 
3. FINIT ELEMENT MODEL 
 
3.1. Unit cell models for numerical homogenization methods 
 

Several different unit cell configurations have been used according with the loading conditions and fiber 
arrangement. In this work, it was used square arrangement with circular and square cross section Fig. 3(a) and Fig. 3(b), 
respectively. The square arrangement was used for all loading cases. 

All finite element calculations were made with the FE package ABAQUSTM. Three-dimensional multi-field 20-
node quadratic piezoelectric brick elements (C3D20E), with displacement degrees of freedom and an additional electric 
potential degree of freedom were used. These DOFs allow for fully coupled electromechanical analyses. 
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(a) (b) 

  
Figure 3. FE Model (a) square arrangement with circular cross and (b) square arrangement with square cross 

section 
 
3.2. Material properties 
 

The elastic properties, piezoelectric constants and permittivity are given in 1010 Pa, C.m−2, nF.m−1

 

, respectively. For 
the verification of the algorithm, it was considered a piezoceramic (PZT) fiber embedded in a non-piezoelectric material 
(epoxy – polymeric matrix). The material properties of the epoxy and PZT-5 were taken from Berger et al (2005) and 
showed in table 1. For the analysis presented, a fiber volume fraction of 55.5% was adopted. 
 

Table 1. Material Properties for fiber and matrix and composite volume fraction 
 

C C11 C12 C13 C33 C44 e66 e13 e15 ε33 ε11 

x 10

33 

10 C / m Pa x 102 -9

Fiber 

  F / m 

12.1 7.54 7.52 11.1 2.11 2.28 -5.4 12.3 15.8 8.11 7.35 

Matrix 0.386 0.257 0.257 0.386 0.064 0.064 - - - 0.0797 0.0797 

 
3.3. Boundary conditions for evaluation of the different effective coefficients 
 

The prescribed boundary conditions will simplify the set of equations presented in Eq. (2) and it will be possible to 
evaluate the effective material properties. It can be seen that only six analyses are necessary to get all 11 effective 
coefficients. Most accurate results will be obtained when the loading is applied in fiber direction, here considered as z-
direction. 
 
1st Analysis: effective C13 and C33
 Normal displacements are set zero on surfaces X+, X-, Y+, Y- and Z- (S

 calculation 
11 = S22 = S12 = S23 = S31

 Positive displacements is prescribe on Z+ surface in Z direction; (S
 = 0); 

33
 Electrical potential is set zero on all surfaces ({E}=0). 

 ≠ 0); 

As just S33 is different of zero, first and third lines from Eq. (2) can be used to obtain C13 and C33

13 11 33/effC T S=

: 
 

 (10) 
 

33 33 33/effC T S=  (11) 
 

2nd Analysis: effective e13, e33 and ε33
 Normal displacements are set zero on all surfaces  ({S} = 0); 

 calculation 

 Electrical potential is set zero on Z- surface; 
 Electrical potential is applied to the Z+ surface; 
So, from 1st, 3rd and last lines of Eq. (2), respectively the effective values of e13, e33 and ε33

13 11 3/effe T E=

 can be obtained: 
 

 (12) 
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33 33 3/effe T E=−  (13) 

 
33 3 3/eff D Eε =  (14) 

 
3rd Analysis: effective C11 and C12
 Normal displacements are set zero on surfaces  X-, Y+, Y-, Z+ and Z- (S

 calculation 
22 = S12 = S23 = S31 = S33

 Positive displacements is prescribe on X+ surface in X direction; (S
 = 0); 

11
 Electrical potential is set zero on all surfaces ({E}=0). 

 ≠ 0); 

As just S11 is different of zero, first and second lines of Eq. (2) can be used to obtain C11 and C12

11 11 11/effC T S=

: 
 

 (15) 
 

12 22 11/effC T S=  (16) 
 

4th Analysis: effective ε11
 Normal displacements are set zero on all surfaces  ({S} = 0); 

 calculation 

 Electrical potential is set zero on X- surface; 
 Electrical potential is applied to the X+ surface; 
From the 7th line in Eq. (2): 
 

11 1 1/eff D Eε =  (17) 
 

5th Analysis: effective C66
 Z displacements are set zero on faces Z+ and Z-; 

 calculation 

 All nodes from the center line perpendicular to the X-Y plane have the X and Y displacements set to zero; 
 Two opposite nodes belonging to the fiber border are changed to cylindrical coordinate system and have their 

angular displacement constrained in order to avoid rigid body rotation; 
 Electric potential is set to zero on all surfaces ({E} = 0); 
 Shearing forces of same modulus and opposite orientation are applied on the surfaces Y+ and  Y with X 

direction and on X+ and X- surfaces with Y direction, producing a pure X-Y shear state; 
 The parallelism conditions deduced in Eqs. (8) and (9) must be applied between the pair of surfaces X+ and X-, 

and between Y+ and Y- surfaces. 
These boundary conditions ensure the compatibility of the unit cell. As it was forced a pure shear state in X-Y 

plane, only the component S12

66 12 12/effC T S=

 from {S} is different of zero. Therefore from the 4th line in Eq. (2): 
 

 (18) 
 

6th Analysis: effective e15 and C44 calculation 
 X displacements are set as zero on faces X+ and X-; 
 All nodes from the center line perpendicular to the Y-Z plane have the Y and Z displacements set to zero; 
 Two opposite nodes belonging to the center of the fiber in faces Z+ and Z- (Figure 3(d)) are constrained in Y 

direction in order to avoid rigid body rotation; 
 Electric potential is set to zero on X-, X+, Y- and Y+ surfaces; 
 Shearing forces are applied in the surfaces Y+ and Y- with Z direction, same modulus and opposite orientation 

and on Z+ and Z- surfaces with Y orientation, producing a pure Y-Z shear state; 
 The parallelism conditions deduced in Eqs. (8) and (9) must be applied between the pair of surfaces Z+ and Z-, 

and between Y+ and Y- surfaces. 
These boundary conditions ensure the compatibility of the unit cell. Effective ε11

( )15 2 11 2 23/effe E D Sε= − ⋅ +

 was obtained from Eq. (17). 
Effective values for C44 and e15 can be obtained from the 5th and 8th lines in Eq. (2): 

 
 (19) 

 
( )44 23 2 15 23/eff effC T E e S= + ⋅  (20) 

 
Finallly, a generalized procedure has been developed for calculating all effective coefficients for one volume 

fraction on the basis of the ABAQUS Python Language. This procedure reduces the manual work and save time, as well 
as, it can be used as a template for evaluating the effective coefficients of piezoelectric fiber composites with an 
arbitrary volume fraction of fibers. 
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4. RESULTS AND DISCUSION 
 

According to the procedure discussed above, some results for the properties involved in the effective coefficients 
calculation are presented in Figures 4 and 5 for fibers with square arrangement and circular and square cross section, 
respectively. 
 

 
(a) 

 

 
(b) 

 

 
 (c) 
 

Figure 4. Circular cross section for square arrangement (a) First analysis T11 (b) Fourth analysis E1 and (c) 
Fourth analysis D1 
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(a)  

 

 
(b)  

 

 
(c)  

 
Figure 5. Square cross section for square arrangement (MFC) (a) Third analysisT22 (b) Fourth analysis E1 

and (c) Fourth analysis D
 

1 

As commented before, all 11 effective coefficients have been calculated using FEM for one fiber volume fraction. 
In the first step, for the verification of the methodology, it was considered a piezoceramic (PZT) fiber with circular 
geometry embedded in a non-piezoelectric material (epoxy). From Eq. (5) and using FEM, it was calculated the average 
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values. After that, Eqs. (10) to (20) were used to obtain the effectives coefficients. Thus, the results for a piezoceramic 
(PZT) fiber with circular geometry embedded in a non-piezoelectric material (epoxy) obtained in this work are 
compared to analytical and numerical results of the literature. After the verification of the methodology consistency, it 
was investigated the effective coefficients for a piezoceramic (PZT) fiber with square geometry embedded in a non-
piezoelectric material (epoxy) in order to simulate MFC developed by NASA. 

The results are summarized in the Table 2. The column designed as (1) refer to the result obtained by Berger et al. 
(2005), estimated from graphs presented in their papers. The column designed as (2) refer to the result obtained by 
Moreno et al (2009). The column (1) refers to analytical results obtained by asymptotic homogenization for circular 
cross section. The columns (2) summarize the coefficients obtained by the analysis using FEM for circular cross section 
obtained by Moreno et al (2009). The columns (3) and (4) summarize the coefficients obtained by the analysis 
procedure presented in this work. They refer to square fiber arrangement with circular and square cross section, 
respectively. The values obtained to the effective coefficients are compared using analytical and numerical results as 
reference for validation of the routines, and the diffence between results (∆) is presented in the three last columns of 
Table 2. The first ∆ is taken between the analytical and numerical results presented by Berger et al. (2005) and Moreno 
et. al. (2009), the second ∆ is between analytical and present work (circular geometry), and the third ∆ is between the 
numerical results from Moreno et al. (2009) and present work (circular geometry). 

 
Table 2. Material Properties for fiber and matrix and composite volume fraction 

 
Coefficient Units (1) (2) (3) (4) ∆1 ∆ [%] 2 ∆ [%] 3

C

 [%] 

x10

11 

10

0.95 

 Pa 

1.088 1.085 0.640 14.5 14.2 0.3 

C 0.56 12 0.465 0.467 0.336 16.9 16.6 0.3 

C 0.60 13 0.604 0.604 0.384 0.7 0.7 0.0 

C 3.50 33 3.525 3.513 2.071 0.7 0.4 0.3 

C 0.22 44 0.215 0.190 0.129 2.3 13.6 11.3 

C 0.20 66 0.154 0.151 0.0946 23.0 24.5 1.5 

e

C / m
13 -0.26 

2 

-0.258 -0.258 -0.095 0.7 0.7 0.0 

e 0.02 15 0.0241 0.0245 0.0167 20.5 22.5 2.0 

e 11.0 33 10.86 10.864 6.067 1.3 1.2 0.1 

ε
x10

11 -9
0.28 

 F / m 
0.284 0.287 0.156 1.4 2.5 1.1 

ε 4.20 33 4.270 4.270 2.408 1.6 1.6 0.0 
∆1 - Comparing (1) and (2): Berger et al. (2005) x Moreno et al (2009) 
∆2 - Comparing (1) and (3): Berger et al. (2005) x Present Work 
∆3

5. CONCLUSION 

 - Comparing (2) and (3): Moreno et al (2009) x Present Work 
 

 
A numerical approach (RVE) for predicting the homogenized properties of piezoelectric fiber composites has been 
presented. The numerical approach is based on the FEM analyses. Longitudinal and transversal elastic and piezoelectric 
effective coefficients for a piezoceramic (PZT) fiber with circular geometry embedded in a non-piezoelectric material 
(epoxy) have been calculated with the finite element numerical model and compared to analytical solutions based on the 
asymptotic homogenization method. The presented models showed, in general, a good agreement with analytical results 
obtained by the asymptotic homogenization. Numerical results presented here are very similar to results reported by 
Berger et al. (2005) and Moreno et al. (2009) for the square arrangement of fibers with circular geometry. Therefore, the 
proposed methodology to determine effective coefficients for PZT is very efficient. However, the boundary conditions 
have been  applied with criterion for analyzing 1-3 piezoelectric composites in the both cases, circular and square cross 
section for square arrangement in order to avoid errors during numerical analyses. Thus, the determination of effective 
coefficients for MFC need to be checked using experimental results and/or analytical models. 
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