

VI CONGRESSO NACIONAL DE ENGENHARIA MECÂNICA

VI NATIONAL CONGRESS OF MECHANICAL ENGINEERING

18 a 21 de agosto de 2010 - Campina Grande - Paraíba - Brasil

August 18 – 21, 2010 – Campina Grande – Paraíba – Brazil

ANÁLISE DE TRANSFERÊNCIA DE CALOR EM REGIME LAMINAR COMPLETAMENTE DESENVOLVIDO DE FLUIDOS IMISCÍVEIS (ÁGUA-ÓLEO)

Artur Kimura, artur_kimura@hotmail.com

Elcio Nogueira, elcionogueira@hotmail.com

Centro Universitário de Volta Redonda – Unifoa, Av. Paulo Erlei Alves Abrantes, nº 1325, Três Poços, Volta Redonda - RJ – CEP: 27240-560

Resumo:

O objetivo deste trabalho é efetuar uma análise relacionada com a espessura de isolamento térmico em regime laminar de fluidos imiscíveis (água-óleo) em dutos circulares. O sistema água-óleo é utilizado na prática para diminuição da potência de bombeamento, através da introdução de um filme de água entre o óleo e a parede do duto. Neste trabalho demonstra-se que a potência de bombeamento é função da temperatura global média dos fluidos utilizados, e que a mínima potência de bombeamento ocorre para 9.4 °C (petróleo; relação de densidade S=0.86; relação de viscosidades μ=0.168), com uma redução da ordem de 64% em relação ao escoamento unifásico. Esta máxima redução de potência de bombeamento ocorre para uma espessura relativa de água igual a 0.153. Com relação à transferência de energia na forma de calor, a espessura relativa ótima de água ocorre em 0.062 (muito próximo da parede do duto, com número de Nusselt igual a 5.35; aproximadamente 1.5 vezes maior que o número de Nusselt na região termicamente desenvolvida em escoamento unifásico). Na espessura relativa ótima de filme para potência de bombeamento (0.153) a relação entre os números de Nusselt é da ordem de 1.3. Demonstra-se que existe, claramente, uma relação de compromisso entre o problema de redução da potência de bombeamento e o problema de máxima troca de energia na forma de calor. Propõe-se analisar a espessura do isolante térmico necessário para manutenção da temperatura ótima de potência de bombeamento, em relação à variação da temperatura externa. Efetua-se uma análise relacionada com a variação da temperatura global média dos fluidos, interna ao duto, alterando a condição externa através da variação do coeficiente de transferência de calor na extremidade do isolante. A situação física possibilita a variação da temperatura do óleo, alterando sua viscosidade e exigindo-se, em situações extremas, maior proteção térmica para que se possa obter uma vantajosa relação de potência de bombeamento.

Palavras chaves: Fluidos Imiscíveis (água – óleo), Transferência de Calor; Escoamento Laminar Hidrodinamicamente Desenvolvido: Isolamento Térmico.

1. INTRODUÇÂO

Resultados experimentais disponíveis na literatura para sistemas gás-líquido e líquido-líquido foram apresentados por Brauner (2001), onde se demonstra que a forma mais interessante para transporte de óleo muito viscoso, em escoamento horizontal, consiste de injeção de água na forma de camada anular lubrificante. Neste trabalho, constata-se que a queda na pressão e a redução na potência de bombeamento, sob condições laminares, são maiores do que em condições de escoamento turbulento-turbulento. Brauner concluiu, também, que para um núcleo altamente viscoso o regime, no núcleo, é essencialmente laminar, evidenciando que o estudo de um escoamento bifásico líquido-líquido em

regime laminar é muito importante tanto em termos teórico quanto prático. Nogueira (2002) efetua um estudo de transferência de calor para sistemas líquido-líquido, demonstrando que há um significativo aumento da taxa de transferência de calor quando uma camada de fluido de maior condutividade é inserido no escoamento próximo à parede do duto.

Considerando aspectos relacionados com potência de bombeamento e transferência de calor, há evidências na literatura especializada, Nogueira (1988), de que há uma espessura de filme adequada, que leva em consideração estes dois fatores com o objetivo de se obter o melhor desempenho em termos de dissipação de energia.

Neste trabalho efetua-se uma análise da espessura de filme e do isolante térmico necessários para que se possa trabalhar em condições ideais de operação, na condução de petróleo circundado por um filme de água em dutos circulares.

2. OBJETIVOS

Este trabalho visa estudar a tranferência de energia na forma de calor de fluidos newtonianos imiscíveis, em condições de regime laminar de escoamento anular completamente desenvolvido e termicamente desenvolvido. As grandezas de interesse são: espessura de filme, potência de bombeamento e transferência de calor, através da variação do coeficiente de transferência de calor interno, relacionado com o regime de escoamento e a espessura do filme de água, e do coeficiente de transferência de calor do meio externo, considerando-se uma determinada espessura de isolante térmico na parede do duto. A análise efetuada leva em consideração a obtenção da espessura ideal de isolante, uma vez que esta espessura afeta significativamente a taxa de transferência de calor.

3. DESENVOLVIMENTO

3.1. Análise de escoamento

O escoamento laminar desenvolvido de fluidos Newtonianos imiscíveis em um duto cirular Fig. (1), sem estratificação e com propriedades constantes, é analiticamente descrito pela seguinte forma já simplificada da equação de quantidade de movimento na direção axial, Nogueira (1988):

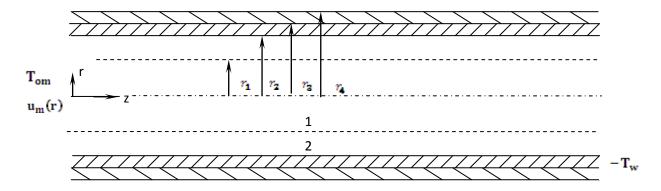


Figura 1: Representação esquemática de escoamento anular de fluidos imiscíveis e parede do duto com isolante térmico

$$\frac{\mu_{\rm m}}{r^{\rm n}} \frac{d}{dr} \left[r^{\rm n} \frac{du_{\rm m}}{dr} \right] = -K \equiv \frac{dp}{dz}, \quad m = 1, 2, \quad n = 1 \tag{1}$$

Definindo-se

$$R=\frac{r}{r_2}, \qquad \delta=\frac{r_1}{r_2}, \qquad \hat{\mu}=\frac{\mu_2}{\mu_1} \eqno(2)$$

Quando se considera a vazão interna e total, **Q1** e Q, iguais, tem-se as seguintes equações, de acordo com o desenvolvimento apresentado em Nogueira (1988):

$$\overline{\mathbf{u}}_{1}\mathbf{A} = \overline{\mathbf{u}}^{*}\mathbf{A} \tag{3}$$

$$\frac{K}{K^{\bullet}} = \frac{2\widehat{\mu}}{\delta^{n+1} \left\{ (n+3) \left[1 + \delta^2 \left(\widehat{\mu} - 1 \right) \right] - (n+1) \widehat{\mu} \delta^2 \right\}} \tag{4}$$

$$\frac{w}{w^*} = \frac{K}{K^*} \Bigg[1 + \frac{(n+3) \Big(1 - \delta^{n+1} \Big) + (n+1) \Big(\delta^{n+3} - 1 \Big)}{\delta^{n+1} \{ (n+3) [1 + \delta^2 (\widehat{\mu} - 1)] - (n+1) \widehat{\mu} \delta^2 \}} \Bigg] \tag{5}$$

Equações das quais tirou-se a solução para a representação gráfica na Fig. (2), que representa a relação entre as potências de bombeamento e a espessura de filme de água.

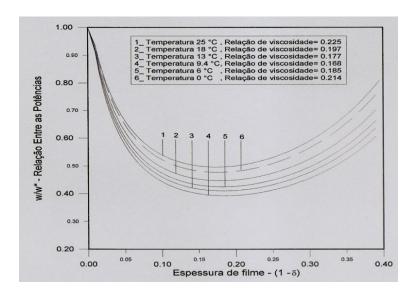


Figura 2: Gráfico da relação entre as potências com relação à espessura de filme e variação da relação de viscosidades

A partir dos resultados representados através da Fig. (2) determinou-se a menor relação entre as potências de bombeamento, considerando-se a variação da relação entre as viscosidades. Neste caso, Fig. (3), obteve-se o ponto de mínimo, demonstrando-se que a menor relação entre as potências ocorre à temperatura de 9.4 °C ($\hat{a} = 0.168$).

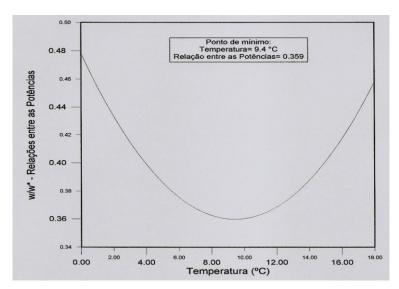


Figura 3: Ponto de mínimo para menores relações entre as potências, em função da relação entre as viscosidades.

Com a escolha do material do duto e conhecendo-se suas dimensões físicas, realizou-se uma análise para garantir escoamento laminar a partir das seguintes equações e dados abaixo (Tabela 1):

$$v = \frac{\mu}{\rho} \tag{6}$$

$$\delta = \frac{D_1}{D_2} \tag{7}$$

$$Re = \frac{\rho D_1 \overline{u}_1}{\mu} \tag{8}$$

$$\overline{\mathbf{u}}_{1} = \frac{\mathrm{Kr}_{2}^{2}}{2\mu_{2}(\mathbf{n}+1)(\mathbf{n}+3)} \{(\mathbf{n}+3)[\mathbf{1}+\delta^{2}(\widehat{\boldsymbol{\mu}}-1)](\mathbf{n}+1)\widehat{\boldsymbol{\mu}}\delta^{2}\}$$
 (9)

Tabela 1: Valores para o petróleo

Temperatura [°C]	Viscosidade dinâmica (\mu) [Kg/ms]	Viscosidade cinética (") [m²/s]	Peso específico (P) [Kg/m³]	Relação entre as viscosidades
9.4	0.00606	0.00000712	851.12	0.168

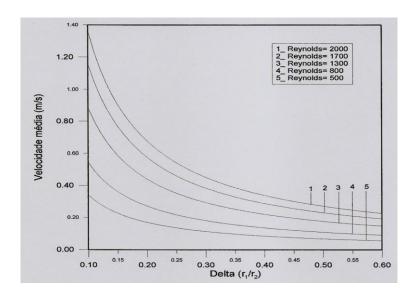


Figura 4: Relação entre a velocidade média do fluido interno com o Delta (δ) para diversos valores de Reynolds na temperatura de mistura 9,4 °C.

3.2. Analise da transferência de calor

Conhecendo-se o ponto onde ocorre a menor relação entre a potência de bombeamento, é de extremo interesse determinar a taxa de transferência de calor. Neste caso, efetuou-se um estudo relacionado com o comportamento do número de Nusselt para escoamento completamente desenvolvido a partir dos dados retirados de Nogueira (1988), de onde obteve-se dados numéricos para a seguinte representação gráfica, Fig. (5).

Foi escolhido para o desenvolvimento do trabalho um duto circular de aço da norma API 5L (API: American Petroleum Institute), que são tubos para oleodutos e gasodutos (line pipes) que vão a partir de 1/8" até 30" ou mais, com espessuras variadas. As resistências à tração variam desde o grau A, com limite de escoamento mínimo de 30.000 psi (21,1 Kg/mm²) até o grau X80 com 80.000 psi (56.2 Kg/mm²).

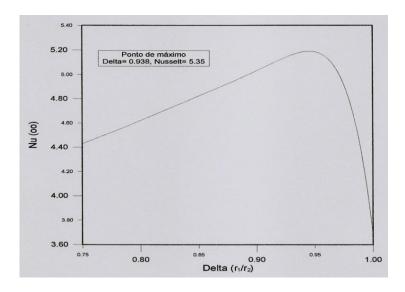


Figura 5. Número de Nusselt em função da espessura de filme, representando a ocorrência do ponto de máximo

A partir da Fig. (5) obteve-se a seguinte expressão do número de Nusselt em função de espessura de filme, (Nu= $8638.89^{54} + 293730.7^{53} - 38294.9^{52} + 218858 - 4678.21$), cujo ponto de máximo ocorre em Nusselt igual a 5.35 (Delta= 0.938, Nusselt= 5.35).

Tabela 2: Dimensões do duto e suas propriedades

Diâmetro		Espessura da parede		Condutividade térmica (C)	
mm	polegada	mm	Polegada	W/mK	
101.60	4	5.74	0.226	45.8	

Decidimos trabalhar com o isolante térmico do tipo lã de vidro, que possue a seguinte propriedade Tab. (3).

Tabela 3: Propriedades do isolantes térmico - Lã de Vidro

Tipo	C [W/mK]	Norma	Fonte
Lã de vidro	0.054	Petrobrás N - 1618	Pitts, Sisson, 1981

Figura 6: Representação esquemática do duto circular com o isolante térmico

Para a determinação do valor do coeficiente de transferência de calor interno hf utilizou-se o valor da condutividade térmica da água $C_f = 0.604 \ W/mK$, Pitts, Sisson (1981).

$$\mathbf{h_f} = \frac{\mathbf{NuC_f}}{\mathbf{Dh}} \tag{10}$$

onde utilizou-se a definição do diâmetro hidráulico:

$$\mathbf{Dh} = \frac{\mathbf{4A}}{\mathbf{P}} \tag{11}$$

Para Dh= 101.60 mm.

Para análise do fluxo de transferência de calor, através da parede do duto e do isolante térmico, utilizou-se a equação de condução de calor para regime permanente abaixo:

$$\frac{\partial}{\partial r} \left[C_s r \frac{\partial T_s}{\partial r} \right] = 0 \tag{12}$$

s=3, aço da tubulação

s=4, isolante térmico

Impomos as seguintes condições de contorno e de interface:

$$r = r_2,$$
 $-C_1 \frac{\partial T_1(r_2)}{\partial r} = h_f [T_f - T_1(r_2)]$ (13)

$$r = r_3, T_1(r_3) = T_2(r_4)$$
 (14)

$$\mathbf{r} = \mathbf{r}_3, \qquad -C_1 \frac{\partial T_1(\mathbf{r}_3)}{\partial \mathbf{r}} = -C_2 \frac{\partial T_2(\mathbf{r}_3)}{\partial \mathbf{r}}$$
 (15)

$$r = r_4, -C_4 \frac{\partial T_4(r_4)}{\partial r} = h_\infty [T_4(r_4) - T_\infty]$$
 (16)

De onde se determinou os seguintes perfis de temperatura para os meios sólidos:

$$T_{3}(r) = \frac{h_{f}r_{2}}{C_{3}} \left[T_{f} - T_{3}(r_{2}) \right] \ln \left(\frac{r_{3}}{r} \right) + \frac{h_{f}r_{2}}{C_{4}} \left[T_{f} - T_{3}(r_{2}) \right] \ln \left(\frac{r_{4}}{r_{3}} \right) + \frac{h_{f}r_{2}}{h_{\infty}r_{4}} \left[T_{f} - T_{3}(r_{2}) \right] + T_{\infty}$$

$$\tag{17}$$

$$T_4(r) = \frac{h_f r_4}{C_4} \left[T_f - T_3(r_2) \right] \ln \left(\frac{r_4}{r} \right) + \frac{h_f r_2}{h_\infty r_4} \left[T_f - T_3(r_2) \right] + T_\infty$$
 (18)

Logo, temos:

$$T_{3}(r_{2}) = \frac{T_{\infty} + h_{f}r_{2}T_{f}\left[\frac{1}{C_{3}}\ln\left(\frac{r_{3}}{r_{2}}\right) + \frac{1}{C_{4}}\ln\left(\frac{r_{4}}{r_{3}}\right)\right] + \frac{1}{h_{\infty}r_{4}}}{1 + \left\{h_{f}r_{2}\left[\frac{1}{C_{3}}\ln\left(\frac{r_{3}}{r_{2}}\right) + \frac{1}{C_{4}}\ln\left(\frac{r_{4}}{r_{3}}\right) + \frac{1}{h_{\infty}r_{4}}\right]\right\}}$$

$$(19)$$

e

$$Q = h_f[T_3(r_2) - T_f]$$
 (20)

Para condições genéricas na região externa, demonstra-se que o fluxo de calor é obtido em função do coeficiente de transferência de calor externo (h_{∞}) por:

$$Q = \frac{T_f - T_{\infty}}{\frac{1}{2\pi r_2 L h_f} + \frac{\ln\left(\frac{r_3}{r_2}\right)}{2\pi L C_3} + \frac{\ln\left(\frac{r_4}{r_3}\right)}{2\pi L C_4} + \frac{1}{2\pi r_2 L h_{\infty}}}$$
(21)

Abaixo, Fig. (6), apresenta-se a temperatura interna do duto em função da espessura do isolante térmico, considerando-se temperatura prescrita externa igual a 25° C, com relação à variação da temperatura de mistura dos fluidos. Neste caso, uma espessura de aproximadamente 10 mm de lã de vidro possibilita um isolamento térmico adequado, permitindo-se, desta forma, uma temperatura de mistura conveniente para um bom desempenho em relação à potência de bombeamento.

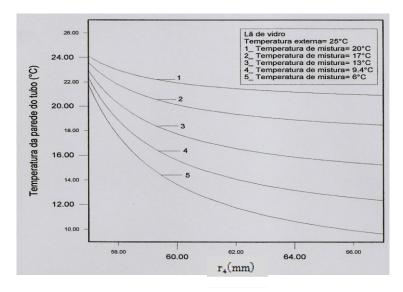


Figura 6: Relação da temperatura na parede do tubo em relação à espessura do isolante térmico (14)

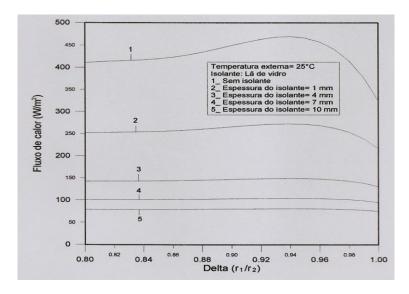


Figura 7: Fluxo de calor em relação à variação do número de Nusselt, função da espessura de filme, para temperatura externa prescrita igual a 25° C e temperatura de mistura igual a 9.4° C

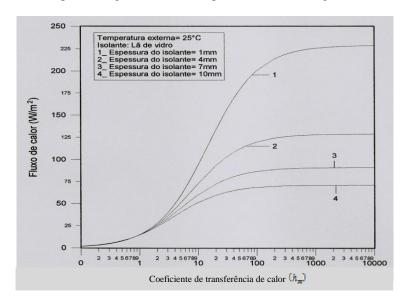


Figura 8: Fluxo de calor com a condutividade externa tendendo ao infinito (h_m) e temperatura externa igual a 25° C

As Figuras (7) e (8) representam o fluxo de calor para duas condições de contorno externas: temperatura prescrita e variação do coeficiente de transferência de calor externo. Há uma evidente consistência entre os dois resultados apresentados, para as espessuras do isolante térmico analisadas, quando o coeficiente de transferência de calor externo tende para infinito [caso de temperatura prescrita – Fig. (7)].

4. CONCLUSÃO

Demonstrou-se, neste trabalho, que há uma variação significativa da relação de bombeamento entre escoamento unifásico de óleo e uma mistura anular de água-óleo, com um filme de água próximo à parede do duto. Esta redução na potência de bombeamento depende da temperatura de mistura dos fluidos e passa por um mínimo à temperatura aproximada de 9.4° C, para os fluidos analisados. Uma espessura aproximada de 10 mm de lã de vidro possibilita a manutenção desta temperatura interna para uma condição de temperatura externa igual a 25° C, para espessuras de filme de água relativamente elevadas, de acordo com os resultados apresentados na Fig. (7). Resultados similares são obtidos para diferentes temperaturas externas (15° C, 30° C, 40° C), de acordo com o estudo efetuado.

A espessura de filme ideal para melhor desempenho hidrodinâmico, no caso analisado, é da ordem de 0,26, de acordo com resultados apresentados através da Fig. (3). Nesta situação, de acordo com resultados apresentados nas Figuras (6) e (7), a espessura adequada de lã de vidro, como isolante térmico, é de aproximadamente 10 mm, conforme discutido acima.

5. AGRADECIMENTOS

Os autores agradecem à Administração do Centro Universitário de Volta Redonda – UNIFOA, que possibilitou que este trabalho fosse efetuado fornecendo uma bolsa de Iniciação Científica ao aluno do Curso de Engenharia Mecânica Artur Kimura.

6. REFERÊNCIAS

- Nogueira, E., 1988, "Escoamento Laminar e Transferência de Calor em Fluidos Imiscíveis sem Estratificação", São José dos Campos, Brasil, pp. 131-134.
- Nogueira, E., Cotta, R. M., 1990 "Heat Transfer Solution in Laminar Cocurent of Immiscibible Liquids". Warme-Ünd Stoffübertagung, Vol. 25, Springer-Verlag, Alemanha, pp. 361-367
- Nogueira, E., Dantas, L. B., Cotta, R. M., 2002, "Heat Transfer in Liquid-Liquid Annular Two-Phase Flow in a Vertical Duct". Hybrid Methods in Engineering, Vol. 4, pp. 1-19
- Nogueira, E., Cotta R. M., 1988 "Thermohyfraulic Performance in Cocurrent Laminar Flow of Immiscibible Liquids". II Encontro de Ciências Térmicas ENCIT, Águas de Lindóia, Brasil, pp. 307-310
- Prada, V., Bannwart, J. W., 1999 "Pressure drop in vertical core annular flow" XV COBEM, Congresso Brasileiro de Engenharia Mecânica, Águas de Lindóia, Brasil
- Angeli, P., & Hewitt, G. F. (2000). Flow structure in horizontal oil-water flow. Int. J. Multiphase Flow, 26, 1117-1140 Brauner, N., 2001, "The prediction of dispersed flows in liquid-liquid and gás–liquid sistems. Int. J. Multiphase Flow", 27, 59-76.
- Pitts, D. R., Sisson, L. E., 1981, "Fenômenos de Transporte", São Paulo, Brasil, pp. 319 328. http://www.isar.com.br/index.php?/produtos sub/isolantes-termicos/poliuretano