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Abstract.  Parallel plate latent heat storage units are simple in construction and equally efficient as any other system 

of latent heat storage. Usually these systems are susceptible to variation of the gap between plates as well as the 

temperature uniformity over the plates surfaces. These parameters can lead to reducing the rate of solidified mass, 

presence of convective currents, reduction of the total solidified mass, increase of the time for complete solidification 

as well as the reduction of the solidification velocity. A simplified model is formulated based upon one dimensional 

heat transfer conduction discretized by using the finite difference approximation and solved by adopting the modified 

variable time the step scheme. The numerical predictions are results for the two cases of constant and variable wall 

temperature. The numerical for the two cases were compared with experiments and it was found that the variable 

temperature case indicated good agreement with the experimental results. Additional numerical predictions and 

experimental results were realized and compared to establish the validity of the model and its predictions. Both the 

experimental and numerical predictions are used to investigate the effects of the gap between the plates and the plate 

surface temperature on the time for complete solidification, the solidification velocity and the total solidified mass. The 

results are presented and discussed. 
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1. INTRODUCTION  
 

The process of heat transfer with phase change is associated with many engineering application such as metal 

processing ice fabrication, food preservation and latent heat storage systems. In the latent heat storage systems, the 

PCM is subjected to high temperature absorbing heat and changing to phase from solid to liquid. When required to 

liberate its latent heat energy content, the PCM is subjected to lower temperature than its phase change temperature. 

The PCM is usually free or encapsulated depending upon the application. One of these possible geometries for energy 

storage is the parallel plate storage unit. In this unit the parallel plates are the heat transfer surfaces to exchange heat 

between the PCM and the working fluid circulating within the plate. 

       The literature is rich with analytical, numerical, experimental and applications publications, (Erek, Ilker and Acar 

2005; Poots, 1962; Cho and Sunderland, 1969; Prud’homme et al. 1989; Eckert et al. 1997; Lin and Jiang, 2003 and 

Dincer and Rosen, 2002; Saito, 2002; Stritih, 2004; and Ozisik, 1980) and many others. 

       In this paper we are interested in developing a simplified model for the heat transfer with phase change between 

parallel plates submersed in PCM. The model will be used to estimate in a rapid way the performance of latent heat 

storage units of the parallel plate type. In order to validate the proposed model experimental rig is constructed and 

instrumented to enable the experimental investigation of the different working and geometrical parameters affecting this 

problem. 

 

2. FORMULATION OF THE PROBLEM  
 

The physical problem to be analyzed is composed of a set of parallel cold plate separated by equal gaps between 

the plates. The plates are cooled by a flow of cold secondary flow where temperature can be verified according to the 

working conditions. The set of plates are submersed in a PCM (water) generally maintained at the solidification 

temperature. 
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     Figure 1. Simplified layout of a parallel plate latent heat storage unit. 

 

The layout of the problem is shown in Fig (1). The treatment of the problem is restricted to the solidification of the 

PCM between the plates. Considering the symmetry of the problem, our attention will be concentrated on between one 

plate and half the gap. They the liquid PCM is confined in a semi infinite region determined by half the gap and the cold 

surface of the plate where the liquid is at the phase change temperature, while the plate temperature is smaller than the 

phase temperature due to the cold secondary fluid circulation within the plate. As a result, the time layer of solidified 

PCM is formed on the surface and the solid liquid interface starts to move in the positive x direction as seen in Fig (2). 

 

 
     Figure 2. Model for the solidification between parallel plates. 

 
Assuming constant physical properties for the PCM, Cho and Sunderland (1969) the phase change is one 

dimensional and governed by pure conduction with the wall temperature being constant or variable, one can write the 

governing equation and the associated boundary conditions as below Equations 1 to 4. 
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with the following boundary and interface conditions 
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where S(t) is the Interface position, L is the  Latent heat of the PCM,  k is the thermal conductivity of the PCM, 

Tmis the phase change temperature, x is the distance measured normal to the plate and t is the time.   

The equations are discretized using the finite difference approximation and the modified variable time step MVTS 

scheme proposed by Gupta and Kumar (1981). In the present problem, the PCM is initially considered at the phase 

change temperature 
mT  and is confined in the region bx ≤≤0  where b is half the gap. For 0>t , the control surface at 

x=0 is submitted to temperature below 
mT  while the boundary at x=b is kept isolated as a symmetry condition. The 

solidification starts at x=0 and advances along the x direction as shown in Figure 2. To solve the problem by finite 

difference approximation, the domain (x-t) is subdivided into small intervals of x∆  and t∆  as shown in Fig (3). The 

space approximation of variable time requires that in each time instant mt , the time step 
mt∆  is selected such that the 

interface move exactly a distance x∆  during the time interval t∆ ,in this way it will always be at a node. Consequently 

it is necessary to determine the time step 
11 −+ −=∆ nnn ttt , such that in the time interval nt  a 1−nt , the interface moves 

from the position xn∆  to the following position xn ∆+ )1( . 

The basic equations and the associated boundary and initial conditions are discretized by using finite difference 

implicit scheme as below Equations 5 to 11. 
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             Figure 3. Subdivision of the domain “x-t” with constant ∆x and variable ∆t. 

 

Rearranging the above equation one has 
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Define the parameters nr   
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Boundary condition at x=0 
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Interface condition 
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which is valid for all time instants 
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The equation of energy balance at the interface is discretized as 
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Or 
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where p is the number of iterations. 

 

Determination of ot∆  

Here me describe the algorithms to determine the time step nt∆  such that during this internal the interface moves 

exactly the distance x∆ . 

To start the process, set n=0 in eq. (8) and (11) to obtain the following explicit expression for ot∆  according to 

Equations 12. 
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Determination of 1t∆  

 
Set  i=1 and n=1 in eq. (6) we have 
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set n=1 in eq. (8) we have 
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In order to solver Eq. 13 and 14 it is necessary to know the value of )( pri  defined by eq. (7) and depends upon 

)( p

ir∆ . Iteration is necessary in this case to initiate the process put: 

0

)(
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using the value of 
)0(

ir ,calculated by eq. (7), solve eq. (13) and (14) and calculate 
1

it∆  from eq. (11). Continue the 

iteration process until the differences between two consecutive times satisfy the convergence condition 
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Determination of nt∆  

The above results are used in the following algorithms to calculate the time steps nt∆  in each time level nt , n = 2, 

3,… 

a) the time steps nt∆  at the time levels nt , n = 2, 3, 4,… are calculated by iteration, where one choose a value 

for 
)0(

nt∆ according to Equation 15. 

1

)0(

−∆=∆ nn tt , ,...3,2=n                                                                                            (15) 

The system of eq. (6) to (8) with the condition (9) is solved for i = 1, 2, 3,…,n. 

Setting p = 0, one can obtain the first value estimated for the nodal temperatures according to Equation 16. 

 

[ ] )0(1+n

iT , for i = 1, 2,...,n                                                                                                (16) 
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Since the system of equations is tridiagonal it can be solved by TDMA. 

b) the value of [ ] )0(1+n

iT  obtained from equation (16) are now introduced in equation (11) for p= 0. In this way, 

one an obtain the first estimated value for the time step 
)1(

nt∆ ; 

c) this value of  
)1(

nt∆  is used to calculate the first value 
)2(

nt∆ , respecting the steps (a) and (b) of the algorithms; 

The steps (a), (b) and (c) are repeated until the convergence criterion between two successive time steps is 

satisfied ≤∆−∆ + pp tt 1

1
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In order to validate the numerical model and its predictions, an experimental set-up is constructed and 

instrumented. This experimental rig is designed to enable a realization of experiments necessary to investigate three 

important parameters for phase change of PCM between parallel plates. These parameters are the gap between the 

plates, temperature and mass flow of the secondary working fluid. The secondary fluid used in the experiments is 

ethanol.  

 

3. RESULTS AND DISCUSSION 
 

In the numerical model two boundary conditions were used constant wall temperature and variable wall 

temperature. 

 

 
 Figure 4. Variation of the interface position as function of time for Tf=-16 oC, E=0,051m, M= 0.0793 kg/s. 

 
Figures (4) to (6) show the behavior of the solidification for the true boundary conditions. As can be seen the 

experimental measurements agree well with the condition of variable wall temperature. 

For Figures (4) and (5) every thing is the same except the mass flow rate of the secondary fluid. As can be seen, 

increasing the mass flow rate increases the rate of solidification the velocity of the interface predicted numerically and 

determined experimentally is show in Fig. (7). As can be seen initially the velocity of the interface due to the fact that 

the solidified layer is very small and hence the over all thermal resistance is small and consequently the thermal 

gradient is high leading to high velocity of the interface. As the time passes, the thicknesses of the solidified layer 

increase and the over all thermal resistance too leading to a smaller thermal gradient and consequently smaller interface 

velocity.  One can verify from both Figs. 6 and 7 that the agreement is fairly good. 

 

 
Figure 5. Variation of the interface position as function of time for Tf=-16 ºC, E=0,105 m, M= 0.102 kg/s. 
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Figure 6. Variation of the interface position as function of time for Tf=-26 ºC, E=0,105 m, M= 0.0793 kg/s. 

 
Figure 7. Variation of the interface position as function of time for Tf=-16 ºC, E=0,073m, M= 0.0656 kg/s. 

 

 

Figure 8. Experimental and numerical temperature distribution in the solid phase for Tf=-22 ºC, E=0,051m, M= 

0.0656 kg/s. 

 
The temperature distribution in the solidified layer is presented in Fig. (8). Both the predicted numerical 

temperature and the measured distributions are compared and as can be seen the agreement is good. From these 

comparative results one can observe that the agreement is good indicating that the proposed model with variable wall 

temperature can represent fairly well the phase change process between parallel plates submersed in the PCM and hence 

can be used to predict the performance of storage units of the parallel plate type. 
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4. CONCLUSION  

 

From the above discussion one can conclude that the proposed simplified model is adequate and reasonably 

accurate to predict the phase change characteristics of the PCM between parallel plates as confirmed by comparisons 

with the experimental measurements. 

Also the experimental results showed that the increase of the gap between plates reduces the interface position and 

hence the interface velocity but increases the time for complete solidification. Reducing the secondary fluid working 

temperature is shown to have the opposite effects that is, increase the interface position, enhance the interface velocity 

are reduce the time for complete solidification. The variation of the secondary fluid mass flow rate has similar effects as 

reducing its temperature but to small extent. 
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