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Abstract. The motivation of this work is the development of a Riemann solver to the transient isothermal drift flux 
model, a set of two mass equations and one momentum equation which describes the transient behavior of a gas-liquid 
mixture in a pipe. The set of equations constitutes a non-linear hyperbolic system of conservation laws in one space 
dimension. The hyperbolicity is one of the main features of this system and rules the nature of the numerical methods 
employed to solve the system. The system is hyperbolic as long as the three eigenvalues of the Jacobian matrix, A, are 
real and distinct.  The present article objective is the development of approximated forms of A to express the 
eigenvalues by means of analytical expressions in order to reduce the computational cost of the Riemann solver. The 
simplification hypothesis considers the squared of sound velocities ratio between the gas to the liquid phases much 
smaller than one. The approximated form of A and the hiperbolicity analysis is performed for a range of gas and liquid 
superficial velocities spanning from 0.1 to 28 m/s and for operational pressures of 1, 10 and 100 bar. Furthermore the 
accuracy of the approximated eigenvalues expressions are compared against the exact value resulting in an accuracy 
better than 3% for applications where the void fraction spans from 0.15 to 0.98. 
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1. INTRODUCTION  
 

The motivation of this work is the development of a Riemann solver to the transient isothermal drift flux model. The 
choice for a Riemann solver instead of numerical schemes based on finite differences or finite volumes is fact that the 
former embodies on the numerical routines physical aspects of the phenomena. The wave decomposition discloses if the 
faster or the slower wave families are dominant on the flow field and the characteristic velocities reveals the flow 
characteristic times. Furthermore, the numerical method only works if the system is hyperbolic, i.e., if the system has 
real and distinct eigenvalues. The loss of system's hiperbolicity frequently is signal that some of the closure equations 
are inappropriate to the present flow regime. 

The transient flow of a gas-liquid mixture inside a pipe is expected to behavior physically as a wave which has a 
finite propagation velocity and the flow along the pipe exhibits zones of influence and zones of dependence as it 
advances in time. The three transient equations representing the drift flux model constitutes a non-linear hyperbolic 
system of conservation laws in one space dimension which mathematically represents the expected wave behavior of 
the gas-liquid mixture. The hyperbolicity is the main feature of this system and rules the nature of the numerical 
methods employed to solve the system. As a first step toward development of a Riemann solver this work presents the 
development of a hiperbolicity analysis of a simplified form of drift flux set of equations.  

In previous work Theron (1989) and Gavage (1991) developed simplified forms of the drift flux model to the 
Jacobian matrix A and to express the eigenvalues through simple analytical expressions. More recently Fjelde and 
Karlsen (2000) propose the use of numerical techniques to evaluate the exact form of the Jacobian matrix A. While 
Fjelde and Karlsen (2000) approach is exact it has a high computational cost to use in Riemann solvers. On the other 
hand the simplifications used by Theron (1989) and Gavage (1991) over simplify the non-linear system constraining its 
application range on gas-liquid flows. Flatten and Munkejord (2006) constructed a Roe-type numerical scheme for 
approximating the solutions of a drift flux two phase flow model. The authors derived an analytical expression for the 
flux Jacobian of the model. A method for obtaining a fully-analytical Roe matrix for the special case of the Zuber-
Findlay closure law was presented. 

Based on the exact representation of the drift flux system an analytical expression to the Jacobian matrix A is 
developed by the recursive use of implicit derivatives. The elements of matrix A are further simplified considering the 
simplifying hypothesis where the sound velocity ratio of the gas to the liquid phases is (cg/cl)

2 << 1. To test the 
hyperboicity of the simplified system the eigenvalues are evaluated analytically and compared against the exact values.  
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2. MATHEMATICAL FORMULATION 
 
The one dimensional, transient, isothermal and no interphase mass transfer form of the drift flux model is shown in 

Eqs. (1) thru (3). Equations (1) and (2) represent the mass conservation on the liquid and gas phases and the mixture 
momentum equation is shown in Eq. (3). 
 

( ) ( )1 1 0,l l lv
t x

α ρ α ρ∂ ∂− + − =      ∂ ∂
 (1) 

 

( ) ( ) 0,g g gv
t x

αρ αρ∂ ∂+ =
∂ ∂

 (2) 

 

( ) ( ) 2 21 1l l g g l l g g mv v v v p s
t x

α ρ αρ α ρ αρ∂ ∂
  − + + − + + =   ∂ ∂

, (3) 

 
where p is the pressure, α is the gas void fraction, the subscripts l and g identify the liquid and gas phases and are 
associated to the fluids density and velocity, ρ and v respectively. The last term on Eq. (3), sm , is a source term 
representing the wall friction force and possible volumetric forces, e.g., gravity. Since the term sm has no space or time 
derivative associated with it the hyperbolicity analysis is performed only with homogenous part of the system and there 
is no need to define sm for the moment.  

The thermodynamic state equations for the liquid and gas densities are expressed in terms of the sound velocities 
  

,0
,0 2 2

   and      l
l l g

l g

p p p

c c
ρ ρ ρ

−
= + =  (4) 

 
where the velocity of the sound to the liquid phase is represented by cl and ,0lρ and ,0lp are given constants. Due to the 

heat capacities difference between the gas and liquid phases the sound velocity for the gas phase is evaluated 

considering an isothermal process, 0gc RT=  where T0 is the reference temperature and R is the gas constant. Surface 

tension effects are not considered therefore it is expect from Eq. (4) that ( ) 2 2
,0 ,0l l l l g gc p cρ ρ ρ− ⋅ + = ⋅ . 

The system of equations given by Eqs. (1) thru (3) can be expressed in the conservative form in terms of the vectors 
of the variables and of the fluxes, U and F respectively 
 

( )

( )

( )

( )

1 1

2 2

2 2
3 3

1 1

0     where               and        

1 1

U F
U F

l l l

g g g

l l g g l l g g

vu f

u f v
t x

u fv v v v p

α ρ α ρ
αρ αρ

α ρ αρ α ρ αρ

  − −   
  ∂ ∂    + = = ≡ = ≡      ∂ ∂         − +    − + +   

 (5) 

 
The system has three equations and four unknowns. To provide the system closure it is used the kinematic relation 

proposed by Zuber and Findlay (1965). 
 

0g m dv C v v= + , (6) 

 
where vm is the mixture velocity and vd is the drift velocity as defined in Eq. (7). 
 

( )1     and      1 g
m l g d

l

v v v v C gD
ρ

α α
ρ∞

 
= − + = − 

 
 (7) 

 
The parameters C0 and C∞ employed in Eqs.(6) and (7) are defined accordingly to the fluids transport properties and 

to the flow pattern regime. Table 2 exhibits the values for C0 and C∞ as a function of the flow pattern regime. 
 

2.1 The Jacobian matrix and the eigenvalues 
 
The Jacobian matrix A arises when Eq.(5) is expressed by its quasi-linear form 
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1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

0,             with         

df df df

du du du

df df df

du du du

df df df

du du du

d

t x d

 
 ∂ ∂
 + = = =

∂ ∂  
 
 

U U F
A A

U
 (8) 

 
The difficult task to get the elements of the Jacobian matrix is to evaluate the derivatives of the components of the 

vector flux to the components of the vector of variables as indicated in Eq.(8). The employed technique resembles the 
thermodynamics derivatives. The procedure is shown in the form of an example to evaluate the element A1x1. 

 

( ) ( )
2 3 2 3 2 3 2 3

1
1 1

1 1 1 1, , , ,

1 1A l l
x l l l l

u u u u u u u u

d dvdf d
v v

du du du du

ραρ α α ρ= = − + − + −  (9) 

 
The evaluation of the 1st and 3rd terms of the RHS of Eq. (9) is straightforward but the evaluation of the 2nd term is 

not trivial. Therefore this example focus on the evaluation of 
2 3

1 ,l u u
d duρ . Expressing ρl by the state equation defined 

in Eq. (4) then  
 

2 3 2 3

2
1 1, ,

1l

lu u u u

d dp

du c du

ρ =  (10) 

 
Considering that u1 = u1(α, ρl) then 
 

1 1 1

l

l

l

ddu du du d

dp d dp d dpρα

ρ α
ρ α

= +  (11) 

 
Using again the state equation for the liquid phase to express 

 

2

1l

l

d

dp c

ρ = , (12) 

 
and since u2 is held constant in Eq.(10) and 2

g gd dp cρ = , it is possible to define 

 

2

2
g g

u

cdp

d

ρ
α α

= −  (13) 

 
Substituting Eqs. (12) and (13) into Eq. (11) one gets 
 

( )1
2 2

1
l

l g g

du

dp c c

α ρ α
ρ

−
= +  (14) 

 
Applying the law of reciprocal of the derivatives in Eq. (14) and replacing the result in Eq. (10) one gets 
 

( )2 3

2

2 2
1 ,

2 1

g

g ll

l g gu u

l l

cd

du c c

c

ρ
ρρ

ρ
α α

ρ

 
 
 = −

  
⋅ − +    

   

 (15) 

 
The analytical expressions defining the next elements of A are evaluated following similar procedure. The nine 

elements of A are rather lengthy analytical expressions. This work proposes a simplification hypothesis on the elements 
of A neglecting terms where 

 ( )2
1g lc c <<

.
 (16) 

ISSN 2176-5480

2515



C.G.S., Santim, L.E.M., Lima and E.S., Rosa  
Aproximated Eigenvalues and Hyperbolicity of the Drif Flux Model Applied to the Vertical Gas-Liquid Flow 
 

Applying the hypothesis defined in Eq. (16) on the exact form of A one gets the approximated form of the Jacobian 
matrix where the elements of the 1st, 2nd and 3rd lines are displayed in Table 1. 

 

Table 1. Approximated form of the Jacobian matrix when ( )2
1g lc c << .  

( )
( )

0

1 1

0

 
1 1

A
g

l

g

l

x g

C
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ρ
ρ

ρ
ρ
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− −
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ρ ρ ρ
ρ ρ ρ

ρ
ρ

ρ ρ
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ρ
ρ

ρ
ρ

ρ
ρ
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αρ α

α α α

α α

α

α

− + − + − + + −
=

− −

+ − − − + − + +
=
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The advantages of expressing A by a simpler analytical form lays on simpler eigenvalues expressions which will aid 

the development of a linearized solver for this non-linear system. The eigenvalues expressions for the simplified form 
of A are determined employing the symbolic processing embodied on Mathematica software. The eigenvalue 
expressions are 

 

( )

( )

( )

( )

0 0

0 0
1 2 3

0 0

0 0

1 1
1 1

;      ;       

1 1
1 1

g g g g

l l l lA A A
l l g

g g

l l

v vC C

C v C v
v c v c v

C C

C C

ρ ρα α
α ρ α ρ

λ λ λ
ρ ρα α

α ρ α ρ

        
+ +        − −        = + = − =

      
+ +      − −         

, (17) 

 
where c, represents the expression 
 

( ) ( )
2

2 2
0 0 0 02

0 0

1 1

1

g l g
g g

lg

g
l

l

v v
c C C C C

c
c

C C

ρ
ρ α α α α

ρ

ρ
αρ α α

ρ

 −
 − + − +
 
 =

 
− + 

 

  (18) 

 
 

The eigenvalues expressions resultants from the approximation ( )2
1g lc c <<  on A matches the eigenvalues 

proposed by Gavage (1991) in the limits where ( ) 1g lρ ρ << and ( )2 2 1g l gv v c− <<  and by replacing 2
g gc pρ =  as 

shown in Eq. (19) 
 

ISSN 2176-5480

2516



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 

( ) ( )1 2 3
0 0

;         ;            
1 1

B B B
l l g

l l

p p
v v v

C C
λ λ λ

αρ α αρ α
= + = − =

− −
.

 (19) 

 
The match reveals physical consistency of the developed approach to a simpler formulation. While present work 

neglects terms with ( )2

g lc c  it is implied that the approach used by Gavage (1991) is even more constrained by 

neglecting terms of ( )g lρ ρ  and ( )2 2
g l gv v c− which for hypothesis have to be much smaller than one. 

The accuracy of the simplified form of A shown in Table 1 is accessed by comparing the associated eigenvalues 
against the exact eigenvalues in section 3. 
 
3. ANALYSIS AND RESULTS 

 
The approximated Jacobian matrix hyperbolicity is accessed through an inspection on the eigenvalues expressions 

defined on Eqs.(17) and (18). If the eigenvalues are real and distinct the system of equations is hyperbolic (Whitham, 
1974). The first and the second eigenvalues shown in Eq. (17) are linked to the gas compressibility and are generically 
represented by an expression of the form: λ = u ± c where u and c have velocity dimensions. Eventual shocks and 
rarefaction waves are associated with these eigenvalue families. The third eigenvalue shown in Eq. (17) is coincident to 
the gas phase velocity. There is no shock associated to this eigenvalue family, the pressure and velocity are continuous 
and it must represent a contact discontinuity in void fraction. The system hyperbolicity is assured as long the argument 
of the numerator of Eq. (18) is always greater than zero or simply 

 

 
( )

2

2
00

1
1 0

1 1
g l g l

g

v v

CC c

ρ ρ
αα

 − 
+ > >    −    

 (20) 

 
Equation (20) shows that the left term being bigger than the right term is not a sufficient condition. Since the term 

( )g l gv v c− is squared it requires that the LHS be greater than zero or simply:  

 
 0 1C α <  (21) 

 
The right side of Eq. (20) resembles a Mach number of a velocity difference. Considering transient flow phenomena 

related to gas-oil production lines in the petroleum industry, a conservative estimate would be ( ) 2
0.1 0g l gv v c ≤ − ≤  . 

The left side of Eq. (20) is harder to estimate because it depends on the gas to liquid density ratio as well as on the C0 
and α values which in turn depends on the flow pattern regime. The analysis of the inequality has to be performed based 
on the procedures developed on the next section. 
 
3.1 Numerical evaluation of the eigenvalues  
 

In an attempt to amend the hyperbolicity test and at the same time to test the accuracy of the approximation done on 
the Jacobian matrix a series of numerical evaluations of eigenvalues using the parameters C0 and C∞ evaluated 
accordingly to the flow pattern regime.  

The test scenario is an upward transient flow in a pipe with 0.025 m in diameter of an air-water mixture at ambient 
temperature and pressures of 1 bar, 10 bar and 100 bar. The pressure range was defined to match those found in oil 

production fields. The cg is constant and equal to 292 m/s while lc  is assumed to be 1000 m/s. The water and air 

superficial velocities, Jl and Jg spanned from 0.1 to 5.2 m/s and from 0.1 to 28.1 m/s respectively. The phases 
superficial velocities are linked to the phases velocities through the void fraction proportionality 

 
 ( )1      and    l l g gJ v J vα α= − = , (22) 

 
where the void fraction is estimated using Eq. (23). 
 

 ( )0g g l dJ C J J vα  = + +   (23) 
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To define a numerical value to the eigenvalues it is still necessary to define C0 and C∞  which are defined in Table 2 

but flow pattern dependent. 
 

Table 2. Definitions for the parameters C0 and C∞ .  

 
Flow Pattern 0C  C∞  

Uniform and distorted bubbles 1 0.2 /g lρ ρ+  0.252 Eon
SR −  

Slug 1.2 ( )0.58-3.06

0.345

1 3805Eo+
 

Annular 
( ) ( ){ }

( ) ( )( ) ( ) ( )

0.5

,

0.5

, ,

1 3 / 4 / 6 / Fr
1

1 / / / / 1

F F F f F

F f I f F g l I F F

R DR S C

R C C S S R

π δ

ρ ρ

 + − 
+

 − + − 

 0 

( ) 2Eo l g gDρ ρ σ = −        and      ( ) ( )Fr /l g l g lJ J gDρ ρ ρ= + −  

 
The new variables displayed on Table 2 are defined as follow. The RF and RS are the liquid holdups for the liquid 

fi lm and liquid piston when slug occurs; Cf,F  and Cf,I  are the Fanning friction factors to the liquid film and at the gas-
liquid interface; SF and SI represent the perimeters of wetted by the film and of the interface; δ is the liquid film height 
and n applies for bubbly flow only and its value is 0 or 1.75 the bubbles are uniform or distorted. The values or 
expressions to the parameters C0 and C∞ for the bubbly, slug and annular flow patterns come from Hibiki and Ishii 
(2003), Bendkisen (1984) and Ishii et al. (1976). The churn flow is better characterized as a transition flow pattern 
between slug and annular flow. The values for C0 and C∞ are not well defined to this regime because being a transitional 
regime it is fuzzy. This work adopted for churn flow the same relations applied in slug. The shift on the C0 and C∞ 
parameters is performed accordingly to the flow pattern predicted by the Taitel et al. (1980) flow map for ascendant 
vertical flows as the Jl and Jg velocities changed along the test grid. 

For referencing purposes Figure 1 displays the flow maps for pressures of 1 bar, 10 bar and 100 bar. The square 
lines represent the boundaries of the superficial velocities defined by the test grid. The open circles are sample points 
within the test grid used to display the evaluated void fraction. The void fraction values superposed into the flow map 
disclose a flow pattern dependency on the void fraction value. As Jg increases, α increases and the flow pattern changes 
are toward the annular flow. This dependence will be explored on the next section to display the eigenvalues map. The 
effect of the pressure change on the flow map is also noticeable. As the pressure increases the transition to the annular 
flow is moved to left; at 100 bar the churn flow no longer exists accordingly to this model. 

 
3.2 Eigenvalues comparison 
 

To access the accuracy of the approximated Jacobiam matrix this matrix's eigenvalues, see Eqs.(17) and (18), are 
compared against the eigenvalues from the exact Jacobiam matrix. Figure 2 shows, for reference purposes, the 
eigenvalues from the exact Jacobiam matrix for pressures of 1 bar, 10 bar and 100 bar. For the range of pressures and 
phases velocities evaluated all the eigenvalues are real and distinct. The families λ1 and λ2 are presented in Figure 2a 
and 2b respectively. These eigenvalues families are linked to the gas compressibility and are generically represented by 
an expression of the form: λ = u ± c. For being the sum or the difference of a reference velocity their behavior is 
analyzed together. The pressure has a strong effect on the eigenvalues. As the pressure increases the eigenvalues' 
absolute values increase for a given void fraction. At the extremes, α→0 or α→1 the mixture approaches the single 
phase flow of water or air, therefore the eigenvalues exhibts a tendency to approach this asymptotic values. The exact 
Jacobian matrix eigenvalues are lengthy expressions which make difficult a physical analysis to explain better the 
dependence on α and p. This will be postponed to the analysis of the eigenvalues expressions for the approximated 
Jacobian matrix. At last, the third eigenvalue is simply the air velocity, vg. The representation of vg against α result in 
decreasing curves because vg = Jg/α. 

 
 

ISSN 2176-5480

2518



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 

(a) 

 
(b) 

 
(c) 

 
 

Figure 1. Flow map for (a) p = 1 bar; (b) p = 10 bar; (c) p = 100 bar. 
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(a) 

 
(b) 

 
(c) 

 
Figure 2. Eigenvalues families for the exact Jacobian matrix for pressures of 1 bar, 10 bar and 100 bar; λ1, λ2, and λ3 in 

(a), (b) and (c) respectively.    
 
Within the proposed test grid the eigenvalues resultant from the approximated Jacobian matrix, see Eqs. (17) and 

(18), and those proposed by Gavage (1991) , see Eq. (19), are all real and distinct therefore the system is hiperbolic. The 
following test access the accuracy of the approximated Jacobian matrix by comparing the eigenvalues against the exact 
values show in Figure 2 in terms of the relative error given by 

ISSN 2176-5480

2520



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

 

Error (%) 100
simplified exact

simplified

λ λ
λ

−
= ×  (24) 

 
Figure 3a shows the relative error for 1

Aλ  eigenvalue family as a function of the void fraction for pressures of 1 bar, 

10 bar and 100 bar. The relative error of the 1
Aλ increases as the pressure increase or the void fraction decreases. 

Nonetheless for α > 0.3 the relative error for all tested pressures is less than 1 % of the exact eigenvalue. For α < 0.3 the 
relative error grows as the void fraction approaches zero and is sensitive to the operational pressure. For α = 0.01 the 
relative errors were of 0.25 %, 2.5 % and 25 % for pressures of 1 bar, 10 bar and 100 bar respectively. 

Figure 3b exhibits the Gavage (1991) approximated eigenvalue,1
Bλ . It is observed that the eigenvalues are also 

sensitive to the operational pressure but, distinctly from previous case, the behavior of relative error is described as a 
concave curve with a local minimum nearly at α = 0.25. For α < 0.3 the relative error behavior is coincident with the 
previous case but, for α > 0.3 the relative error behavior diverge. For α ranging from 0.91 to 0.98 the relative errors are 
as high as 10 %, 100 % and 400 % for pressures of 1 bar, 10 bar and 100 bar respectively.  

Figure 4a and 4b shows the relative error for 2 2 and A Bλ λ  eigenvalues family as a function of the void fraction for 

pressures of 1 bar, 10 bar and 100 bar. The figure is shown just for completeness of the eigenvalues information but the 
relative error bounds and behavior are have the same description given form 1 1 and A Bλ λ families. 

No comparison is made for λ3 family because it is coincident with the exact value. 
 
(a) 

 
(b) 

 
Figure 3. Relative error of1

Aλ (a) and 1
Bλ (b) in terms of void fraction for different pressures.  
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(a) 

 
(b) 

 
Figure 4. Relative error of2

Aλ (a) and 2
Bλ (b) in terms of void fraction for different pressures. 

 
The behavior of the exact eigenvalues shown in Figure 2 and the relative error behavior shown in Figures 3 and 4 

for the  λ1,2 eigenvalues families can be interpreted rewritten Eq. (17) in the form of Eq. (25). 
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 +    −−   = ± ⋅ +
   − − − −+   − 

. (25) 

 
The first and second terms on the RHS of Eq. (25) are represented by u and c. For applications on gas-liquid flows 

in pipelines u << c, therefore the c term rules the behavior of the λ1,2 eigenvalues families. An inspection on Eq. (25) 

reveals that 1,2 ~ pλ  and is supported by the exact values shown in Figure 2. For a given constant α, the ratio of 

eigenvalues laying on different pressure curves are proportional to the square root of the pressure ratio, for example:  
100 10 10 1
1 1 1 1/ / 10λ λ λ λ≅ ≅ . The dependence of λ1,2 on α in c discloses that for α→0 the eigenvalue grows unbounded, 

certainly this term is responsible for the large relative errors found when α→0.  The other extreme occurs for α→1; the 
eigenvalues present a mild growth rate as α grows because the term within the 2nd square root of c grows as α 
approaches the unity. The same does not occurs with Gavage (1991) approximated eigenvalue because expressions 
lacks these correction terms. 
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4. CONCLUSIONS 
 

The approximated Jacobian matrix is hyperbolic and has real and distinct eigenvalues within 1% to the exact 
eigenvalues for 0.3 < α < 0.99. For α < 0.3 the relative errors increase with the pressure, nonetheless for operational 
pressures of 1bar and 10bar the relative errors are bounded to 3%.  

The simplification (cg/cl)
2 << 1 reduced the algebraic complexity of the Jacobian matrix allowing to express the 

eigenvalues through analytical expressions. The authors believe that this simplification will aid the deployment of  
linearization techniques to solve the system reducing the computational cost. 
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