
 

22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Copyright © 2013 by ABCM 

 
3D COMPOSITIONAL RESERVOIR SIMULATION USING 

UNSTRUCTURED GRIDS IN HOMOGENEOUS RESERVOIRS 

 
André Luiz de Souza Araujo  
Federal Institute of Education, Science and Technology of Ceará, Fortaleza, Ceará, Brazil.  
andre@ifce.edu.br 
 

Bruno Ramon Batista Fernandes  
Federal University of Ceará, Laboratory of Computation Fluid Dynamics, LDFC, Fortaleza, Ceará, Brazil. 
brbfernandes@ldfc.ufc.br 
 
Robson Melo Araujo  
Federal University of Ceará, Laboratory of Computation Fluid Dynamics, LDFC, Fortaleza, Ceará, Brazil. 
robson@ldfc.ufc.br 
 

Edilson Pimentel Drumond Filho  
Federal University of Ceará, Laboratory of Computation Fluid Dynamics, LDFC, Fortaleza, Ceará, Brazil. 
edilson@ldfc.ufc.br 
 
Ivens da Costa Menezes Lima  
Federal University of Ceará, Laboratory of Computation Fluid Dynamics, LDFC, Fortaleza, Ceará, Brazil. 
ivenscml@ldfc.ufc.br 
 
Francisco Marcondes  
Federal University of Ceará, Department of Mettalurgical Engineering and Material Science, Fortaleza, Ceará, Brazil. 
marcondes@ufc.br 
 
Kamy Sepehrnoori  
The University of Texas at Austin, Department of Petroleum and Geosystems Engineering, 200 E. Dean Keeton St., C0300, Austin, 
TX 78712-1585. 
kamys@mail.utexas.edu  
 
Abstract. This paper presents a 3D implementation of an element-based finite-volume method (EbFVM) using 

hexahedron, tetrahedron, prism and pyramid elements in conjunction with a compositional reservoir simulator. The 

EbFVM approach combines the conservative advantage of the finite volume method and adds flexibility to handle 

irregular geometries. The EbFVM is implemented into the UTCOMP simulator considering a full permeability tensor 

formulation for the advection terms. The UTCOMP simulator was developed at the Center for Petroleum and 

Geosystems Engineering at The University of Texas at Austin for the simulation of enhanced recovery processes. 

UTCOMP is a compositional multiphase/multi-component, Implicit Pressure Explicit Composition simulator (IMPEC), 

which can handle the simulation of miscible gas flooding processes. Only permeability and porosity are stored into the 

cells, and all other properties are evaluated in the grid vertex, and therefore the balance equations are performed in a 

cell-vertex approach. The balance equations are locally evaluated into the elements and each piece of the elements, 

called sub-control volume, are assembled to form the control volumes around each vertices. The results of several 

cases studies are presented in terms of volumetric rates of oil and gas, and saturation fields. The results of the original 

formulation of the UTCOMP simulator using Cartesian meshes are also presented.  
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1. INTRODUCTION  

 
One of the key issues in petroleum reservoir simulation is the correct representation of the irregular reservoir shape. 

Most of simulators are based on Cartesian grids. However, Cartesian grid does not present the necessary flexibility for 
modeling the complex shapes of reservoirs commonly found in fields. Boundary fitted coordinates and unstructured 
grids are much more flexible options to model irregular shapes of reservoirs (Marcondes et al., 2008; Marcondes and 
Sepehrnoori, 2007, 2010; Marcondes et al., 2013). This paper is devoted to the application of 3D unstructured meshes. 
Application of unstructured meshes on petroleum reservoir simulation started with the works of Forsyth (1990), Fung 
et. al. (1991), and Gottardi and Dall’Ollio (1992). The aforementioned authors uses linear triangle elements for the 2D 
discretization of  material balance equations. The numerical approximation equations were first obtained for single 
phase flows, and the transmissibilities were multiplied by mobilities in order to obtain the equation to multiphase flows. 
This approach was first called Control Volume Finite Element Method (CVFEM). Later on, Edwards (2002a, 2002b) 
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presented the multipoint-flux approximation. This technique is defined by the storage of all physical properties at the 
vertex of the elements of the grid, including the porosity and the absolute permeability tensor, and it was developed for 
2D discretization using triangular and quadrilateral elements. 

Cordazzo (2004) and Cordazzo et. al. (2004a-b), based on the works of Raw (1985) and Baliga and Patankar (1983) 
developed a method to solve water flooding problems. The approach is similar to the CVFEM technique concerning the 
final approximate equations, although this new method derives the equations directly from the multiphase/multi-
component flow assumption, since, is shown by these authors that the multiplication of the single-phase flow equations 
by the phase mobilities does not adequately approximates the equations for multiphase flow. This new scheme was 
called Element-based Finite Volume Method (EbFVM), a more suitable denomination for a technique that adds the idea 
of elements and shape functions from the finite element method to a simple finite volume method. Excellent results 
were obtained and little grid orientation effects were observed, for an implicit pressure explicit saturation (IMPES) 
formulation. Later, Paluszny et. al. (2007) presented a fully 3D discretization for hexahedron, tetrahedron, prism and 
pyramids elements in conjunction with water flooding problems. More recently, Marcondes et al. (2013) presented a 3D 
discretization using the EbFM formulation for a simulation of composional reservoir simulation in conjunction with a 
fully implicit approach. 

In this work, the EbFVM method is investigated with homogeneous 3D reservoir using four kind of elements: 
hexahedron, tetrahedron, prism, and pyramid. Each element has a constant porosity and permeability tensor, but the 
values of these properties are not necessarily the same between different elements. Except for these two properties, the 
rest of the physical properties are evaluated at the vertices of each element, giving rise to a cell vertex approach. The 
technique was implemented on the UTCOMP simulator, developed at the Center of Petroleum and Geosystems 
Engineering at The University of Texas at Austin for the simulation of enhanced recovery oil processes. UTCOMP is a 
compositional multiphase/multi-component, Implicit Pressure Explicit Composition (IMPEC) simulator, capable of 
handling miscible gas flooding processes. Three case studies were investigated using regular and irregularly shaped 
reservoirs with different number of hydrocarbon components applying all four-element types. Comparison of the results 
obtained for the regular reservoir show a reasonable accuracy for all four elements and a good agreement when 
comparing the results with the Cartesian grid formulation. Also, accurate results were obtained when simulating a case 
study involving irregularly shaped reservoir.  
 
2. GOVERNING EQUATIONS 

 
According to Wang et. al. (1997), three equations are required in order to describe an isothermal, multi-component, 

multiphase flow in a porous medium: the material balance equation for all components, phase equilibrium equation and 
the equation for constraining phase saturations and component concentrations.  

Considering a full symmetric permeability tensor, the material balance equation for each of the i-th components is 
written as follows: 
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where nc+1 represents the total number of components (hydrocarbon components + water), np denotes the number of 
phases,  is the reservoir porosity, j and j are the molar density and relative mobility of each of the j-th phase, 
respectively, Ni is the number of moles of the i-th component per unit of pore volume, xij is the molar fraction of the i-th 
component in the j-th phase, Vb is the volume of a control-volume that could contain a well, and K  is the absolute 
permeability tensor. 

The potential of the j-th phase (j) is given by 
 

j j jP D   . (2) 
  
In Eq. (2), Pj is the pressure of the j-th phase and D is the reservoir depth, evaluated as positive in the downward 

direction. The first partial derivative of the total Gibbs free energy for the independent variables results on the equality 
of component fugacities in all phases. 
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In Eq. (3), L2 denotes the second liquid phase and nc is the number of hydrocarbon components, the fugacity of 
component i in phase j is given by,  ijij

j

i xf ln , where ij is the fugacity coefficient of component i in the j-th phase. 
Using the molar fraction restriction the solution for Eq. (3) is given. 
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where Ki is the equilibrium ratio for the i-th component, zi represents the overall molar fraction of the i-th component 
and  is the mole fraction of the gas phase in the absence of water. 

 
The volume constraint considers that the pore volume of every cell has to be filled by all phases present in the 

reservoir which is given by 
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where Vp denotes the pore volume, j  and Lj are the molar volume of and the amount of the j-th phase, respectively. 
 
3. APPROXIMATE EQUATION 

In the EbFVM method each element is divided into sub-elements, also called sub-control volumes. All sub-control 
volumes that share the same vertex are then assembled to build the control volume around each vertex. For this 
approach, the material balance, Eq. (1), is first integrated for every one of the sub-control volumes of each element. 
Then, the final equation of each sub-control volume is built getting contributions from all sub-control volumes that 
shares each vertex. The division of the elements in sub-control volumes  is performed according the number of vertices 
of each element. Fig. 1 presents the sub-control volumes and the integration surfaces for each one of the aforementioned 
elements. 

 

 

(a) 
 

(b) 

 

(c) 

 

(d) 

 
Figure 1. Sub-control volumes for the four elements types: (a) hexahedron, (b) tetrahedron, (c) prism and (d) pyramid. 
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As we can see in Fig. 1, except for the pyramid type, each sub-control volume has three integration surfaces 
associated which are quadrilateral. The pyramid elements present a singular case, since there are actually two types of 
sub-control volumes, the ones associated with the base, with two triangular integration surfaces and only one 
quadrilateral integration surface, and the one associated with the apex, with four quadrilateral integrations surfaces. 

The integration of Eq. (1) for each sub control-volume followed by the application of the Gauss theorem for the 
advective term gives:   

   
 
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In order to evaluate the first term of Eq. (6), first the shape functions need to be defined for each element typr. The 

shape functions for hexahedron, tetrahedron, prism and pyramids elements, are respectively given by 
  

1 2

3 4

5 6

7

(1 )*(1 )*(1 ) (1 )*(1 )*(1 )( , , ) ; ( , , )
8 8

(1 )*(1 )*(1 ) (1 )*(1 )*(1 )( , , ) ; ( , , )
8 8

(1 )*(1 )*(1 ) (1 )*(1 )*(1 )( , , ) ; ( , , )
8 8

(1 )*(1 )*(1 )( , , ) ;
8

s t p s t p
N s t p N s t p

s t p s t p
N s t p N s t p

s t p s t p
N s t p N s t p

s t p
N s t p

     
 

     
 

     
 

  
 8

(1 )*(1 )*(1 )( , , )
8

s t p
N s t p

  


, 
(7) 

 
1 2

3 4

( , , ) 1 ; ( , , )
( , , ) ; ( , , )

N s t p s t p N s t p s

N s t p t N s t p p

    

 
, (8) 

 
1 2

3 4

5 6

( , , ) (1 )*(1 ) ; ( , , ) *(1 )
( , , ) *(1 ) ; ( , , ) *(1 )
( , , ) * ; ( , , ) *

N s t p s t p N s t p s p

N s t p t p N s t p p s t

N s t p s p N s t p t p

     

    

 

, (9) 

 

1

2

3

4

5

1( , , ) [(1 )(1 ) * * /(1 )]
4
1( , , ) [(1 )(1 ) * * /(1 )]
4
1( , , ) [(1 )(1 ) * * /(1 )]
4

( , , ) [(1 )(1 ) * * /(1 )]
( , , )

N s t p s t p s t p p

N s t p s t p s t p p

N s t p s t p s t p p

N s t p s t p s t p p

N s t p p

     

     

     

     



. 
(10) 

 
In Eq. (7) through Eq. (10), s, t and p represent the local axis in the transformed domain. Throughout shape 

functions, any geometrical or physical properties can be evaluated inside elements  
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In Eq. (11), Nv and Ni are, respectively, the number of vertex and the shape functions of each element The gradient 

phase potential are given by 
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However, these gradients can only be fully evaluated when the derivatives of the shape functions related to x, y and 

z axis are computed. The derivatives are presented in Eq. (13). Further details can be found in Hurtado (2011) and 
Marcondes et al. (2013). 

ISSN 2176-5480

8911



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

  
1 1 1

det( ) det( ) det( )

1 1 1
det( ) det( ) de

i i i i

t t t

i i i

t t

N N N Ny z y z y z y z y z y z

x J t p p t s J s p p s t J s t t s p

N N Nx z x z x z x z

y J t p p t s J s p p s t

                   
          

                   

             
       

             
,

t( )

1 1 1
det( ) det( ) det( )

i

t

i i i i

t t t

Nx z x z

J s t t s p

N N N Nx y x y x y x y x z x y

z J t p p t s J s p p s t J s t t s p

    
 

     

                   
          

                   

 (13) 

 
where det(Jt) is the Jacobian determinant of the transformation, which needs to be computed at the center of each sub-
control volume, is given by the following equation: 
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The definition of the volumes of each sub-control volume and the area of each interface is also required for the 

evaluation of integral term of Eq. (6). The volumes of each sub-control volume for hexahedron, tetrahedron, prism and 
pyramids are, in that order, given by: 
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The area of each interface for a hexahedron element follows. 
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In Eq. (19), m and n represent the local system s, t or p. The evaluation of the area for each interface for the other 

types of elements is similar. 
Now the accumulation term can be properly expressed through Eq. (15) to Eq. (18), and the advective flux by Eq. 

(19) and the equivalent equations for other elements and evaluating the physical properties through an explicit approach 
the following expressions for the accumulation term (Acc) and advective flux (F) are obtained: 
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The superscripts n+1 and n in the Eqs. (22) and (23) means properties evaluated in the current and the previous 
time-step, respectively. The analysis of Eq. (21) shows the necessity of computing molar densities, molar fractions and 
mobilities for the interfaces of each sub-control volume. An upwind scheme was applied in order to evaluate these 
properties. Considering, for instance, the integration point 1 in Fig. 1a, the mobility is given by 

 

1 2
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Inserting Eq. (20) and Eq. (21) into Eq. (6), the resulting equation is: 
 

, , 0 ; 1,..., ; 1,..., 1
m i m i i v c

Acc F q m N i n      . (23) 
 
Eq. (23) represents the conservation balance for each sub-control volume of every element. The equation of each 

control volume around each vertex is obtained by summing up Eq. (23) for each sub-control volume that shares that 
vertex. A similar procedure needs to be performed to the pressure equation. 
 
4. RESULTS 

 
The results of three case studies using the EbFVM approach are presented in this section. The first case is a gas 

flooding simulation into a quarter of five-spot configuration, and the other two cases are related to a gas flooding in an 
irregular configuration. The first case is a high pressure reservoir with gas injection. The reservoir data, fluid 
composition data and binary coefficients values are given in Tabs. 1 through 3, respectively. In tables 2 and 3, the 
pseudo component NC16 denotes a lumped component that mimics a heavy hydrocarbon component. 
 

Table 1. Reservoir data for case 1.  
 

Property Value Unit 
Width 170.688 m 
Length 170.688 m 

Thickness 30.480 m 
Porosity 0.30 - 

Water Initial Saturation 0.25 - 
Initial Pressure 20.648 MPa 

Permeability in X and Y 200 mD 
Permeability in Z 20 mD 

Formation Temperature 299.817 K 
Producer Bottom Hole Pressure 20.648 MPa 

Injector’s Gas Rate 6.554E-03 m3/s 
                           

Table 2. Fluid compositions for case 1.  
 

Component Initial Reservoir 
Composition 

Injection Fluid 
Composition 

CO2 0.0100 0.9500 
C1 0.0190 0.0500 

NC16 0.8000 0.0000 
                           

Table 3. Binary interaction coefficients for case 2.  
 

Component CO2 C1 NC16 
CO2 0.00 0.12 0.12 
C1 0.12 0.00 0.00 

NC16 0.12 0.00 0.00 
 
Figures 2 and 3 present the oil and gas rates obtained with the all the four types of elements. The results obtained 

with a very refined Cartesian mesh are also shown.  
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(a) (b) 

 
Figure 2. Oil (a) and gas (a) rate for case 1. 

 
From Figs. 2 and 3, it possible to conclude that the results obtained with the EbFVM formulation for all investigated 

elements presents a satisfactory match. The results are also in a good agreement with the results from Cartesian grid. It 
is also worth to mention the drastically higher level of refinement required for the Cartesian grid to achieve the same 
approximate solution of the EbFVM approach for all elements investigated. In this case study, only one hydrocarbon 
phase is formed, due to the high reservoir pressure and the fact that the binary coefficients were not considered. The oil 
saturation front at 500 days of simulation is presented in Figure 4. From this figure is possible to see that agreement 
between the four types of elements studied and the Cartesian mesh was obtained. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
Figure 3. Oil saturation at 500 days for case 1. (a) Cartesian; (b) Hexahedron; (c) Prism;  

(d) Tetrahedron; (e) Pyramid. 
 

In order to show the capability of the EbFVM method to handle reservoir with irregular shapes, the next two case 
studies are related to an irregular reservoir. In both case studies, we have four producer wells near the borders of the 
reservoir, and two injector wells positioned next to central location of the reservoir. Figure 5 shows the two grid 
configurations used. For the second case study, we consider a fluid that contains three components. The pressure of the 
reservoir is high enough to maintain, initially, a single hydrocarbon phase. The injected fluid is rich in CO2. The 
reservoir data and initial and injected fluid composition are presented in Tables 4 and 5, respectively. 

 
 

 
(a) 

 
(b) 

 
Figure 4. Meshes for case studies 2 and 3. (a) Hexahedron grid with 1600 nodes; 

 (b) Hybrid grid with 1744 nodes. 
 

Table 4. Reservoir data for case 2.  
 

Property Value Unit 
Porosity 0.30 - 

Water Initial Saturation 0.25 - 
Initial Pressure 20.468 MPa 

Permeability in X and Y 200 mD 
Permeability in Z 20 mD 

Formation Temperature 299.817 K 
Producer Bottom Hole Pressure 20.468 MPa 

Injector’s Gas Rate 163.87 m3/s 
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Table 5. Fluid compositions for case 2.  
 

Component Initial Reservoir 
Composition 

Injection Fluid 
Composition 

CO2 0.0100 0.9500 
C1 0.1900 0.0500 

C10 0.8000 0.0000 
                           

Figure 7 presents the oil and gas production rates. From this figure it possible to observe a good match between the 
results obtained with both grid configurations. 

 

  
(a) (b) 

 
Figure 4. Oil (a) and gas (b) rate for case 2. 

 
Figure 5 presents the gas saturation field at 3000 days on the upper and bottom layer of the reservoir.  
 

 
(a) 

 
(b) 

 

 
(a) 

 
(b) 

 
Figure 5. Gas saturation field at 3,000 days for case 2. a) Upper layer – hexahedron grid; b) Upper layer - hybrid grid; c) 

Bottom layer - hexahedron grid; (d) Bottom layer - hybrid grid. 
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From Figure 5, it is possible to verify that the saturation field at upper and lower surface of the reservoir obtained 
with both grid configurations are in good match. The figure also shows the gas phase is flowing faster in the lower level 
of the reservoir. This behavior, at first look, seems to be incorrect. However, it is important to mention that the phase 
labeled as gas, is actually a supercritical phase rich in carbon dioxide. In this condition, the CO2 rich phase has a higher 
density then the oil phase, and therefore it is will flow in deep region of the reservoir.  

The last case study refers to a reservoir characterized by six hydrocarbon components. The reservoir is initially 
saturated. Tables 6 and 7 show the reservoir data set and fluid compositions, respectively.  

 
Table 6. Reservoir data for case 3.  

 
Property Value Unit 
Porosity 0.35 - 

Water Initial Saturation 0.25 - 
Initial Pressure 10.340 MPa 

Permeability in X and Y 10 mD 
Permeability in Z 10 mD 

Formation Temperature 344.26 K 
Producer Bottom Hole Pressure 8.960 MPa 

Injector’s Gas Rate 4.916 m3/s 
                           

Table 7. Fluid compositions for case 3.  
 

Component Initial Reservoir 
Composition 

Injection Fluid 
Composition 

C1 0.5000 0.7700 
C3 0.0300 0.2000 
C6 0.0700 0.0100 

C10 0.2000 0.0100 
C15 0.1500 0.0050 
C20 0.0500 0.0050 

                           
The oil and gas rates are shown in Figure 6. From this figure, it is possible to verify again a good agreement between 

the curves obtained with both grid configurations. 
 

  
(a) (b) 

 
Figure 6. Oil (a) and gas (b) rate for case 3. 

 
The gas saturation fields at 3000 days for the upper and bottom level are shown below. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
Figure 7. Gas saturation field at 3000 days for case 3. (a) Hexahedron grid, upper level;  

(b) Hybrid grid, upper level; (c) Hexahedron grid, bottom level; (d) Hybrid grid, bottom level. 
 

In this conditions, it is impossible to make any conclusions bases only in the upper level fields, hence the 
importance of the bottom level fields, presenting the same tendency as the previous case. Also, the production rates 
show, again, a reasonable match. 
 
5. CONCLUSION 

 
This work presented an element-based finite volume method for 3D compositional reservoir simulations. The 

method was applied to hexahedron, tetrahedron, prism and pyramid element types for general geometries reservoirs. 
The results of the quarter of five-spot reservoir show a satisfactory accuracy for all four of elements, when compared 
among themselves, and, better yet, a good agreement with the Cartesian grid formulation. It is important to notice that 
these results were obtained with a much lower grid refinement then the Cartesian grid. The case studies also reveal the 
capacity to handle irregular reservoir geometries. This is shown by the good match between the hexahedron and the 
hybrid meshes. In conclusion, the EbFVM technique implemented was tested for various conditions and reservoirs, and, 
based on the presented results, the method shows great potential to solve problems with various geometries and special 
conditions, such as the formation of the carbon dioxide rich phase. 
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