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Abstract. Differential Evolution Algorithm (DE) has shown to be a powerful evolutionary algorithm for global 

optimization in a variety of real world problems. DE differs from other evolutionary algorithms in the mutation and 

recombination phases. Unlike some meta-heuristic techniques such as genetic algorithms and evolutionary strategies, 

where perturbation occurs in accordance with a random quantity, DE uses weighted differences between solution 

vectors to perturb the population. Although the efficiency of DE algorithm has been proven in the literature, studies 

indicate that the efficiency of the DE methods is sensitive to its control parameters (perturbation rate and crossover 

rate) and there is not any guarantee that premature convergence will be avoided. To overcome this problem, the 

present work proposes an Adaptive Differential Evolution as based on the concept of population diversity aiming at 

dynamically updating the control parameters. The methodology proposed is applied to the simultaneous estimation of 

the radiation phase function of anisotropic scattering, albedo and optical thickness in an inverse radiative transfer 

problem. The results show that the procedure represents a promising alternative for the type of problem presented 

above. 
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1. INTRODUCTION 
 

The inverse analysis of radiative transfer in participating media has numerous practical applications, such as the 
one-dimensional plane-parallel (Silva Neto and Özişik, 1995; Alvarez Acevedo et al., 2004, Lobato et al., 2008, Lobato 
et al., 2009) and two-dimensional media (Carita Montero et al., 2001; Carita Montero et al., 2004), and radiative 
transfer in composite layer media (Siegel and Spuckler, 1993; Wang et al., 2002), which are devoted to applications in 
scientific and technological areas that are related to environmental sciences (Hanan, 2001), parameter estimation (Sousa 
et al., 2007), and tomography (Kim and Charette, 2007). 

Traditionally, three research lines are proposed for the solution of parameter identification problems by using 
optimization techniques: the Deterministic, the Non-Deterministic and the Hybrid Approach (Wang et al., 2001; Silva 
Neto and Soeiro, 2002; Silva Neto and Soeiro, 2003a, Silva Neto and Silva Neto, 2003b; Chalhoub et al., 2007).  

The main difficulty found in the so-called non-deterministic approach is the high number of objective function 
evaluations needed to solve optimization problems. Besides, in spite of the performance and the number of applications 
encompassed when fixed parameters are used by the algorithm, there is no guarantee that premature convergence will 
be avoided (Coelho and Mariani, 2006). In addition, the DE algorithm is sensitive to control parameters (Storn et al., 
2005; Gämperle et al., 2002) and it is highly problem dependent (Zaharie, 2002; Qin and Suganthan, 2005; Brest et al., 
2006), thus claiming for ad-hoc configurations. According to Nobakhti and Wang (2006), because of the special 
mutation mechanism used in DE, if for any reason (such as an incorrect choice of the perturbation rate - F) the DE 
population looses diversity, then the search will completely stop as mutation becomes zero. 

To overcome this difficulty, many methodologies have been proposed. Zaharie (2003) proposes a feedback update 
rule for F that is designed to maintain the diversity of the population at a given level (and thus stop the search procedure 
prematurely). Recently, chaotic search models have been used for the adaptation of parameters in non-deterministic 
approach due to its ability in escaping premature convergence (Coelho and Mariani, 2006). In Tavazoei and Haeri 
(2007), a study about the performance of different chaotic search models when they are incorporated to classic 
optimization is addressed. In this context, Coelho and Mariani (2007) have used the Ant Colony algorithm with logistic 
maps in engineering problems.  

Another research line to make the number of objective function evaluations to decrease is using special strategies to 
update the population size. In this context, Lobato and Steffen (2009) defined the convergence rate concept based on the 
homogeneity of the population and applied this concept to solve optimal control problems.  
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In the present contribution the Adaptive Differential Evolution algorithm (ADE) is used for the solution of the 
inverse radiative transfer problem related to the simultaneous estimation of the optical thickness, single scattering 
albedo, diffuse reflectivies and anisotropic scattering phase function of a one-dimensional homogeneous participating 
media. The results obtained with this methodology are compared with the standard Differential Evolution (DE) 
algorithm with fixed parameters. This work is organized as follows. The mathematical formulation of the direct and 
inverse problems is presented in Sections 2 and 3, respectively. A review of the Differential Evolution method and the 
strategy for the dynamic adapting of parameters is presented in Section 4. The results and discussion are described in 
Section 5.  Finally, the conclusions and suggestions for future work conclude the paper.  
  
2. MATHEMATICAL FORMULATION OF THE DIRECT PROBLEM 
 

A plane-parallel, gray, anisotropically scattering slab of optical thickness τo, with diffusely reflecting boundaries is 
subjected to external isotropic irradiation at both boundaries, τ = 0 and τ = τo as shown in Figure 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Scheme of the one-dimensional participating medium. 
 

It is assumed that the emission of radiation by the medium due to its temperature is negligible in comparison to the 
intensity of the external incoming radiation. Also the effects of possible differences on the refractive indices of the 
participating medium and surrounding environment are not taken into account. 

The mathematical formulation of the direct radiative transfer problem is given by (Özişik, 1973); 
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where I(τ, µ) is the dimensionless radiation intensity, τ is the optical variable, µ is the direction cosine of the radiation 
beam with the positive τ axis, ω is the single scattering albedo, ρ1 and ρ2 are the diffuse reflectivities at boundaries τ = 0 
and τ = τo, respectively, A1 and A2 are the strength of the external irradiation at these boundaries, and p(µ,µ′) is the phase 
function of anisotropic scattering which is represented in terms of a series of Legendre polynomials as 
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with b0 = 1, where the coefficients bm, m = 1, 2, …, M are tabulated by Chu et al. (1957).  

In the direct problem defined by Eqs. (1) to (3) the radiative properties and boundary conditions are considered 
known, then the problem becomes the one of determining the radiation intensity I(τ,µ). For that purpose a Collocation 
Method (Villadsen and Michelsen, 1978; Wylie and Barrett, 1985) was used together with a Gauss-Legendre quadrature 
for the terms given on the right hand sides of Eqs. (1) to (3). 
 
3. MATHEMATICAL FORMULATION OF THE INVERSE PROBLEM 
 

In the inverse problem considered here the optical thickness τo, the single scattering albedo ω, the diffuse 
reflectivities ρ1 and ρ2, and the coefficients of phase function of anisotropic scattering, bm, m =1, 2, …, M are considered 
unknown. Note that M is also unknown and from now on it will be referred to as M*. Measured exit intensities at both 
surfaces of the plate {Yi}, at different polar angles corresponding to i = 1, 2, ..., K, are considered available, where K is 
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the total number of measured data. Therefore, the inverse problem can be stated as: utilizing the measured data {Yi}, 
i=1, 2, ..., K, determine the M*+ 4 elements of the vector of unknowns Z defined as: 
 

{ }1 2 , ,    ..., 
T

o 1 2 M*Z , , b , b , bτ ω ρ ρ=
r

 (5) 

 
Considering that the number of measured data, K, is larger than the number of parameters to be estimated, M*+ 4, an 

implicit formulation based on an optimization problem is used for the inverse radiation problem at hand, in which it is 
required the minimization of the least square norm as given below: 
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where Ii and Yi are computed and measured exit intensities, respectively, and the elements of the vector of residues are 
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As real experimental data are not available, the measured exit intensities, Yi, were obtained from simulation. For this 

aim, random error E (with normal distribution and standard deviation σ) was added to the exact intensities, Iexact, 
obtained from the solution of the direct problem. 
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4. SOLUTION OF THE INVERSE PROBLEM 
 
4.1. Differential Evolution Algorithm 

 
Differential Evolution (DE) is a recent optimization technique in the family of evolutionary computation proposed 

by Storn and Price (1995), which differs from other evolutionary algorithms in the mutation and recombination phases. 
According to several authors, DE has as main advantages the conceptual simplicity and faster convergence. However, 
the main difficulty with the technique appears to be in the slowing down of convergence as the region of global 
minimum is approached and stagnation of the population (Lampinen and Zelinka, 2000).  

This methodology consists in generating trial parameter vectors by adding the weighted difference between two 
population vectors to a third vector. The control parameters in DE are: NP, the population size, CR, the crossover rate, 
and, F, the weight applied to random differential (perturbation rate). According to Storn et al. (2005), NP should be 
about 5 to 10 times the problem dimension (number of parameters in a vector), F should be in the range 0.1 to 2.0 and 
CR in the range 0.01 to 1.0. 

The procedure of standard DE is shown in Figure 2 and summarized as follows (Storn et al., 2005): 

 
Figure 2. Differential Evolution Structure. 
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• Step 1: Randomly initialize the population of individuals for DE, where each individual contains n variables; 
• Step 2: Evaluate the objective values of all individuals, and determine the individual that has the best 

objective value; 
• Step 3: Perform mutation operation for each individual to obtain each individual’s mutant counterpart; 
• Step 4: Perform crossover operation between each individual and its corresponding mutant counterpart to 

obtain each individual’s trial individual; 
• Step 5: Evaluate the objective values of the trial individuals; 
• Step 6: Perform selection operation between each individual and its corresponding trial counterpart to 

generate the new individual for the next generation; 
• Step 7: Determine the best individual of the current new population with the best objective value. If the 

objective value is better than the objective value of Xbest, then update Xbest and its objective value with the 
value of the current best individual; 

• Step 8: If a stopping criterion is met, then output Xbest and its objective value; otherwise go back to Step 3. 
 

Storn and Price (1995) proposed various mutation schemes for the generation of new vectors (candidate solutions) by 
the combining the vectors that are randomly chosen from the current population as shown in Table 1. 
 

Table 1. Mutation Schemes used in the Differential Evolution Algorithm (r1, ..., r5 are random integer indexes and 
mutually different, x0 is the trial vector (individual), xbest is the best individual of the current population and x is 

the current individual). 
Strategy Updating Equation 

rand/1 ( )= + −r1 r 2 r 3x' x F x x  

rand/2 ( )= + − + −r1 r 2 r 3 r4 r5x' x F x x x x  

best/1 ( )= + −best r 2 r3x' x F x x  

best/2 ( )= + − + −best r 2 r3 r4 r 5x' x F x x x x  

rand/best/1 ( )= + − + −r1 best r1 r1 r2x' x F x x x x  

rand/best/2 ( ) ( )= + − + − + −r1 best r1 r1 r2 r3 r4x' x F x x F x x x x  

 
Applications of the above technique are found in various fields of science and engineering, such as: digital filter 

design (Storn, 1999), batch fermentation process (Chiou and Wang, 2001), parameter estimation in fed-batch 
fermentation process (Wang et al., 2001), parameter estimation in biofilter modeling (Bhat et al., 2006), economic load 
dispatch problem (Coelho and Mariani, 2007), engineering system design applied to a multi-objective context (Lobato 
and Steffen, 2007), apparent thermal diffusivity estimation of fruits drying (Mariani et al., 2008), solution of inverse 
radiative transfer problems in two-layer participating media (Lobato et al., 2008), optimal control problems (Lobato and 
Steffen, 2009), multi-objective optimization (Lobato et al., 2009), and other applications (Storn et al., 2005). 
 

4.2. Self-Adaptive Differential Evolution Algorithm 
 
In this work, parameter updating is performed according to the previous work from (Zaharie, 2003). This 

methodology is based on the evolution of the population variance (viewed as a measure of the diversity population) 
given by: 
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According to Zaharie (2002; 2003) the expected value of the variance of population obtained after recombination if 

the best element of the population is not taken into consideration is: 
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Consider that x(g) is the population obtained at generation g-1 (initial population). During the g-th generation the 
vector x is transformed into x’ (recombination); then in x” (selection). x” will represent the starting population for the 
next generation, x(g+1). Defining γ as  
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information about the variance tendency is provided: if γ<1 we can compensate an increase of the variance, thus we 
could accelerate the convergence but with the risk of inducing premature convergence and if γ>1 we can compensate a 
high decrease of the variance, thus we can avoid premature convergence situations. The controlling idea is to choose the 
parameter F such that the recombination applied in generation g compensates the effect of the previous application of 
recombination and selection. 

The idea of the parameter adaptation is to solve, with respect to F: 
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Equation (12) can be solved with respect to F: 
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where ( ) ( )2≡ − + −NP c 1 CR CRη  and minF  is the minimal value for F. A sufficient condition for increasing the 

population variance by recombination is that 1>F NP , thus 1=minF NP should be used. An upper bound for F can 

also be imposed as suggested by Storn et al. (2005) ( 2=maxF ). By solving Eq. (12) with respect to CR one obtains the 

following adaptation rule for CR: 
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with CRmin=0.01≤CR≤1.    
 
5. RESULTS AND DISCUSSION 

 
In the inverse radiative transfer problem described before, the goal is the simultaneous estimation of the optical 

thickness, τo, the single scattering albedo ω, the diffuse reflectives ρ1 and ρ2, and the coefficients of the anisotropic 
scattering phase function bm, m = 1, 2, ..., M*. Due to space limitation, the present contribution will focus on the 
estimation of the phase functions represented by PF-1 and PF-2, whose coefficients are listed in Table 2. Therefore, 
even though the other four parameters are also estimated, only test cases with one set of exact values τo = 1.0, ω = 0.5 
and ρ1 = ρ2 = 0.2 were considered. 

 
Table 2. Phase function expansion coefficients (Chu et al., 1957). 

Forward Scattering Backward Scattering 
Coefficient PF-1 (M=4) 

m=1.4, α=1 
PF-2 (M=5) 
m=∞, α=1 

b1 0.57024 -0.56524 
b2 0.56134 0.29783 
b3 0.11297 0.08571 
b4 0.01002 0.01003 
b5 0.00000 0.00063 
b6 - 0.00000 

m is the index of refraction of the particle relative to the surrounding media and α is πD/λ, 
D is the particle diameter and λ is the wavelength of incident radiation. 
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For evaluating the methodology proposed in this work, some practical points should be emphasized:  
 

• To compare the results obtained by the proposed methodology the standard DE algorithm is used with the 
following parameters: DE-1 {F=0.5 and CR=0.5}, DE-2 {F=0.5 and CR=0.8} and DE-3 {F=0.8 and 
CR=0.5}. Parameters used in all algorithms tested: 10 individuals, 1000 generations and DE/rand/1/bin 
strategy for the generation of potential candidates; 
 

• To perform the ADE algorithm γ equal to 1 was taken; 
 

• In all test cases it is also considered the following external illumination: A1=1 and A2=0; 
 

• Finally, the stopping criterion for all the algorithms is associated to the difference between the best and the 
worst values of the objective function; this difference should be smaller than 10-9. All the algorithms were 
executed 10 times to obtain the average values presented.  

 
In order to examine the accuracy of the inverse methodology of analysis considered, test cases with noise (σ =0.02, 

i. e., corresponding to 5% error) or without noise (σ =0) have been studied.  
Table 3 presents the results obtained by DE and ADE algorithms considering the Phase Function PF-1 and Phase 

Function PF-2. In this table it is important to observe that, considering noiseless data, both DE and ADE were able to 
estimate the parameters satisfactorily as shown by the values obtained for the objective function. However, the ADE 
algorithm leads to a smaller number of objective function evaluations as compared with the original DE algorithm (a 
reduction of 32%, 34% and 22% in the number of objective function evaluations, respectively). Good estimates are 
obtained when noise is taken into account. 

Figure 3 presents the radiation intensities profiles at boundaries τ=0 and τ=τo by using the ADE algorithm without 
noise (σ =0) and with exact parameters showed in Table 3.  
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(a) Phase Function 1. (b) Phase Function 2. 

 
Figure 3. Radiation intensities profiles at boundaries τ=0 and τ=τo.

 

 
 
 
In theses figures it is possible to observe that the ADE algorithm is able to perform satisfactorily at the boundaries 

τ=0 and τ=τo for all cases considered without noise. It is important to emphasize that similar behavior can also be 
observed when noise is considered, however larger deviations with respect to the profiles obtained by using the exact 
values of the parameters appear.  
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Table 3. Results obtained using the DE and ADE methods, where OF is the objective function, Eq. (6), and NEVAL is 
the number of function evaluations. 
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Table 4 presents the average errors obtained by DE and ADE algorithms considering the Phase Function PF-1 and 
Phase Function PF-2.  

 
Table 4. Average errors obtained using the DE and ADE methods. 
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In this table is possible to observe that both the algorithms are able to estimate satisfactorily the radiation phase 
function, albedo and optical thickness. However, it is important to emphasize that the ADE algorithm leads to a smaller 
error in all cases studied as compared with the standard DE algorithm (DE-1, DE-2 and DE-3). 

 

Figure 4 shows the perturbation rate and crossover rate profiles obtained by using the ADE algorithm for noiseless 
data.  

0 50 100 150 200

0.5

1

1.5

2

Generation

F

 

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Generation

C
R

 

Best result obtained for Phase Function 1. 

0 50 100 150

0.5

1

1.5

2

Generation

F

 

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Generation

C
R

 
Best result obtained for Phase Function 2. 

 
Figure 4. Perturbation rate (F) and crossover rate (CR) for the case without noise using ADE algorithm. 
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6. CONCLUSIONS 
 
In this work, the Adaptive Differential Evolution (ADE) algorithm, which is based on the concept of population 

diversity to dynamically updating the control parameters, was applied to the simultaneous estimation of the radiation 
phase function, albedo and optical thickness of an inverse radiative transfer problem. The ADE has been found to be 
beneficial for adjusting control parameters during the evolutionary process, especially when compared with the standard 
Differential Evolution algorithm with fixed parameters.  

The main characteristics of the proposed methodology are: dynamic updating of control parameters based on the 
diversity of the population and the easiness of incorporating this strategy to other evolutionary strategies. This first 
characteristic avoided the necessity of choosing these parameters and, as a consequence, the premature convergence of 
the evolutionary process was avoided. Finally, the results showed that the methodology conveyed represents a 
promising alternative for dealing with optimization problems. 

Further research work will be focused on the influence of the parameter values required by ADE on the solution of 
others case studies. 
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