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Abstract. The governing heat transfer equation for cylindrical pellets in nuclear fuel rods is non-linear when it is 

expressed in dependence on the temperature. However, all material properties and physical characteristics of 

crystalline solids are interdependent variables in the topological space, where the interdependences are intrinsic and 

described by a function of invariant form, with bijective (one-to-one correspondence of values) and convergent 

behaviors. By taking into account the bijective relationship between the internal energy and material properties, the 

heat conduction equation is transformed in a linear equation with analytical solutions in steady state or transient 

conditions. In the present paper, the transient solution is demonstrated for measured evolutions of temperatures at the 

centerline of fuel rods and at the outlet of the reactor coolant. The solution is general and can be used in other 

applications. 
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1. INTRODUCTION 
 

Effective heat removal from the fuel pins of a nuclear reactor poses one of the primary considerations in reactor 

design. The term of heat conduction defines the energy transportation as a result of atomic interactions under the 

influence of a non-homogeneous distribution of temperature (Grigull and Sander, 1984). Nuclear fuel vendors and 

nuclear electricity utilities must demonstrate the safety of the reactor by thorough examination of the outcome of steady 

state and transient conditions. In special, transient effects may occur in normal operation as well as in accident 

situations and must be analyzed to assure the fuel pin maintains its integrity during its insertion time in the reactor core. 

The temperature dependence of the thermal properties makes the thermal analysis of reactor fuel pins to be non-linear. 

Traditionally, iterative procedure applying finite difference or finite element methods are used to solve this problem in 

steady state or in transient conditions (Guidotti et al., 1982). However, the design calculations and performance 

evaluations involve the uncertainties related with these methods but also the uncertainties associated with measured 

values of physical and thermal properties.  

In order to reduce the involved uncertainties, an evaluation methodology in analytical form is being developed. This 

development considers a topological view of matter and its properties. In this approach are established the formal 

definitions of convergence, connectedness and continuity to characterize and describe crystalline solids and their 

properties in a unified notion. All properties (material and physical characteristics) of the crystalline solids are 

interdependent variables in the topological space. Their interdependences are intrinsic in nature and are described by a 

function of an invariant form, having bijective (one-to-one correspondence of values) and convergent relationships. The 

form of the function does not depend on any particular choice of physical quantities to represent a material property − 

as suggested by Tarantola (2006). The invariant form function is applied to represent the interdependences among the 

material properties and, in an apparently reverse way, to represent the dependences of physical characteristics on the 

material properties.  

As presented by Dias et al (2007), the relationship IHv  between fuel volumetric capacity to store heat Hv and the 

fuel linear capacity to conduct the heat I is demonstrates as the thermal property that makes linear the heat conduction 

equation. The linearization is obtained by introducing transformations based on material properties. 
 

2. HEAT CONDUCTION EQUATION 
 

The governing heat transfer equation for the fuel pellet is the non-linear, partial differential equation given by  
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that can be rewritten into a form of energy balance by introducing transformations based on material properties:  
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where r is the radial position inside a fuel pellet; ( )∫= dT.TkI  is the material linear capacity to conduct heat; 

( )∫ρ= dT.Tc.H pv  is the specific volumetric capacity to store heat at constant pressure; Qf is the volumetric density of 

the heat generating rate from the fission process; k is the thermal conductivity; ρ is the fuel specific mass and cp is the 

specific heat at constant pressure. In a simple consideration of the above equation, we find that the density of the heat 

generating rate from fission is nullified inside a cylindrical element when the density rates of conducted and stored 

heats are subtracted. 

The relationship among the materials properties  

δ=
ρ

=
pv c.

k

dH

dI
 (3) 

is the material property δ (thermal diffusivity) that establishes the consistency required for the values of material 

properties and for the balance among generated, conducted and stored heats. This consistency is found in the solution of 

the heat conduction equation.  

Material properties I, Hv, k, ρ, cv amongst others are quantifiable coordinates representing the internal energy state in 

the fuel and its response capacities to changes in the surroundings. The spatial and/or time distributions of the integrated 

properties I and Hv are the solution of the Eq. (2). Their bijective relationships (one-to-one correspondence of values) 

with the temperature conduce to the solution of the Eq. (1):  

( ) ( ) ( ))),((),(),(),( trHITtrHTtrITtrT vv ≡≡≡  (4) 

The above space and time solution in terms of temperature ( )trT ,  can be derived from the solutions for the 

distributions of conducted or stored heats, ( )( )trIT ,  or ( )( )trHT v , , or for their interdependences ( ))),(( trHIT v . The 

solutions are based on the existence of bijective correlations among the profiles of the generated, conducted and stored 

heats and the profile of temperature. The distributions of the conducted and stored heats depend on the distributions of 

thermal conductivity and of heat capacity. A temperature value T in the fuel pellet is related with unique values I(T) and 

Hv(T). The consistency of experimental values in the Eq. (3) assure that the same temperature T will be obtained in the 

reverse evaluations T = T(I) or T = T(Hv). To reach this consistency the same set of experimental data is used in the 

development of the analytical expressions )(Tkk = , )(TII =  and )(ITT = . Additionally, the data )(TII =  and 

)(ITT =  are reduced by the summation of components functions with invariant form, as described below.  

 

2.1. UO2 Material Properties 
 

In a topological view of the matter, material properties are defined as quantifiable coordinates representing the 

internal energy state and its response capacities to changes in the surroundings. The variations in the state of internal 

energy cause (or result from) bijective variations in the values of some material and physical properties. Thus, 

variations in the internal energy state on dependence of time (transient) and/or space (gradient) as the governing heat 

transfer equation are also the variations in the material and physical properties. The variations in the internal energy and 

variations in the material and physical properties are to be concurrently described by the same dependence on time and 

position. As suggested by Tarantola (2006), all properties (material and physical characteristics) of the crystalline solids 

are interdependent variables in the topological space; their interdependences are intrinsic in nature and are described by 

a function of an invariant form, having bijective and convergent relationships. The form of the function does not depend 

on any particular choice of physical quantities to represent a material property or the internal energy variations.  

The Relative Variational Model proposed by Dias and al. (2007) to represent the invariant form function or 

distribution function is given as: 
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where y =x-b/c is the relative variation in a coordinate x (as temperature, for instance); b is a reference coordinate 

(room temperature, for example) and c is the characteristic coordinate related to the median or the variance of the 

distribution, like the Einstein temperature θE in the Einstein’s model of the volumetric heat capacity 
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, where R is the gas universal constant (Zemansky, 1968). The derivative and the integral forms of 

Eq. (5) are given as:  
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In order to represent different effects related with bands of temperature for atomic vibration modes, crystalline phase 

dissolution, types of atoms or defects and others, the model is generalized as: 
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where F/Fn is the total distribution of F-values in a range Fn (like cv/3.R of Einstein’s model); η is the number of 

components to represent the property F and ai are parameters fitting the contribution of the band i in the total property. 

The evaluation of 1195 data of UO2 thermal conductivity is shown in Fig. 1. In the range from 0 K to 

Tmelting=3113 K, the data are depicted by the summation of 5 components in the form of derivative functions - Eq. (6). 

The integrated thermal conductivity is given as the summation of components in the form of Eq. (5) – Fig. 2.  

 

 

Figure 1. UO2 thermal conductivity (non-bijective behavior) 

 

Figure 2. UO2 integrated thermal conductivity (bijective behavior) 
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The expression for the reverse function T(I) follows the structure of relative variational model being in this case 

developed for estimate from room temperature (293,2 K) up to the melting point and in the porosity range of 0 to 10%. 

The fitting result is shown in the Fig 3. The bijective relationship (one-to-one correspondence of values) and 

convergence exist between the integrated thermal conductivity and the temperature as shown in Figs. 2 and 3.  

 

Figure 3. Temperature dependences on the integrated thermal conductivity and porosity (bijective behavior) 

 

The dependences on the temperature of the UO2 specific heat capacity at constant pressure cp and thermal expansion 

coefficient α are described by the summation of components similar to Eq. (5), while the integrals ∫ dTc p .  (enthalpy 

variation) and ∫α dT.  (thermal deformation) are given by the summation of components in form of Eq. 7. The lattice 

parameter of the UO2±y fuel and, consequently, the specific mass and thermal expansion depend on the deviation of the 

stoichiometry or O-to-U ratio ( 2−=
U
Oy ) as the behavior described by Eq. (5). Thus, Eqs. (5) to (8) establish the 

formal definitions of convergence, connectedness and continuity to characterize and describe the properties in a unified 

notion. All interdependences of the material properties are described by the summation of a function with invariant 

form, having bijective and convergent relationships. The function form does not depend on any particular choice of 

physical quantities to represent a material property. The invariant form function is equally applied to represent the 

interdependences among the material properties and, in an apparently reverse way, the dependences of physical 

characteristics on the material properties, as for instance, the temperature dependence on the integrated thermal 

conductivity – Fig. 3.  

 

2.2. Heat Conduction in Steady State Condition 
 

Under steady state condition Eq. (2) is reduced to: 
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The integral of the thermal conductivity between the surface and the centerline of the fuel pellet is proportional to 

the linear heat generating rate PL, as discussed by Robertson (1969): 
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where Ic and Is are the integrals of the thermal conductivity to the temperatures in the centerline and surface of the fuel 

pellet; and the factor 
LPf  is the mean value of the heat source distribution in the fuel, that is in the region 0 ≤ r ≤ s 

(s = fuel pellet radius).  

The radial distribution of the integrated thermal conductivity in the fuel pellet is then given by 
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where ∫= sT
s dT.kI

0
; ( )rf

LP  is the radial distribution of the heat source factor and Ts is the fuel surface temperature 

evaluated from the heat transfer condition to the coolant channel. 

As the Ir-values are determined by means of the Eq. (12), the temperature distribution in the fuel is the unknown Tr 

in the equation: 
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that is   ( )rr ITT =  (14) 

where ( )rIT  plotted in Fig. 3 is the reverse function to determine the temperature from the value of the integrated 

thermal conductivity. 

In terms of the integrated thermal conductivity, the heat conduction equation in steady state condition is rewritten as: 
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and the solutions of this equation result from assumptions concerning the relationships between coordinates I and Qf, as 

discussed by Robertson (1969), Weismann (1977), Guidotti et al. (1982) and Pontedeiro et al. (2005).  

Considering the proportionality of relative variations in the heat source and in the geometry as dQf/Qf ≡ dr/r and the 

heat source factor ff QsQ )(=ℑ  between the fission density on the pellet surface )(sQ f  and the mean fission density 

fQ , the density of the heat generating rate as a function of volume or position is given by: 
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and the distribution of the linear heat generating rate is described as  

)r(Q).r(V)r(Q.r.)r(P ff =π= 2
 (17) 

where 2.).( rrV π=  is the fuel cylindrical volume at the radial position r. 

The integrated thermal conductivity and linear heat generating rate are defined in the volume range 0 ≤ r ≤ s, that is: 
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where sT  and cT  are the surface and centerline temperatures of the fuel pellet respectively. This equation represents 

the relative variation in the material property I (similar to cv/3R or F/Fn), which has a bijective relationship with the 

temperature: )().(
0

TfdTTkI I
T

== ∫  and T = fT(I). In fact, the PL(s)-value is the fuel rod linear heat rate as determined 

by the enthalpy variation in the coolant, the ℑ-factor is evaluated by neutronic calculations and the temperature on the 

pellet surface Ts is obtained from linear calculations. Therefore, the above equation establishes a bijective relationship 

among the radial position, linear heat generating rate, integral of the thermal conductivity and temperature. The 

temperature distribution is determined by the relationship Tr = f(I(r)), where f(I) is the analytical, reverse and bijective 

relationship between the temperature and the integrated thermal conductivity shown in Fig.3. 
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2.3. Heat Conduction in Transient Condition 
 

Under transient condition - Eq. (2), the variations are taken in relation with time t, in a transient process 0 ≤ t ≤ tM, 

and also in relation with position r inside the cylindrical pellet 0 ≤ r ≤ s, where tM is the transient duration and s is the 

pellet radius. As shown in the previous section there is a linear relationship between the distributions of the integrated 

thermal conductivity I and of the radial heat sources Qf. The non-linearity in the Eq. (2) depends on the relationship of 

the material properties I and Hv. The ratio between the material properties I and Hv defines the thermal diffusivity as: 
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where ρ is the specific mass, cpm is the specific heat at constant pressure and per unit of mass.  

The equations Hv = I/δ or dHv = dI/δ describe the volumetric capacity of a material to store heat in accordance with 

its linear capacity to conduct it. This relationship is a functional form similar to the relation between potential and 

electric current in electricity: V = R.I. 

The relative variations are rewritten as follows: 
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where the Eq. (20) implies the existence of only one possible solution as the temperature variation determined by the 

relative variation in the enthalpy must be the same as the one determined by the relative variation in the heat 

conduction. The differentials in both forms of energy (stored and conducted) can be taken as being relative to the 

differentials in space, time or any other coordinate. Equation (21) deals with the complementary variations and 

represents the thermal heat balance, where ( )( )dT.kdI−1  is the conducted heat fraction, and )../( . dTcdH pv ρ  

represents the stored heat fraction in relation with the generated total (=100%). Finally, the Eq. (22) defines the thermal 

diffusivity as the superficial rate constant used to convert the stored heat Hv into conducted heat I.  
It should be emphasized that properties and their interdependences (also properties) are mean values measured as 

material responses resulting from changes in the internal energy states of the fuel. 

The stored heat in a steady state condition was established during the reactor startup transient. This transient is 

characterized by three competitive processes, the volumetric heat generating rate resulting from fission, the heat 

accumulation and the heat conduction. In fact, the heat conduction must be considered in two aspects: the heat 

conduction inside the fuel pellet and the heat loss on its surface. In the startup transient, the UO2 capacity to store heat 

increases with the temperature, but its capacity to conduct heat is reduced simultaneously. In spite of this behavior, the 

steady state condition is reached when the heat loss equals the inner heat generating rate. 

Considering the Bernoulli’s solution I(r,t) = φ(r).ϕ(t) we find the heat conduction equation as: 
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When this equation is multiplied by an infinitesimal volume 2.π.r.dr and integrated, we obtain:  
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2  is the linear heat accumulation. In the above equations, the superscript S denotes 

the coordinates in the steady state condition.  

The energy balance during the transient of the reactor startup is given as: 
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where τ is the transient characteristic time.  
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In a given cylindrical element of the fuel pellet, the excess of enthalpy Hv and the heat flux I on the surface r are 

connected by:  
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where δ(r) is the thermal diffusivity on the surface r of the element and tc is the characteristic time for the conduction of 

the heat amount r
2
.Hv at rate I. Under a steady state condition, the linear heat accumulation ∆P
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the general form is depicted as: 
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where 1/t1 and 1/t2 are rate constants for the heat accumulation and heat conduction.  

The heat conduction equation is the transient equation I = φ(r).ϕ(t), where ϕ(t) is the solution to Eq. (27). The 

transitory function for the modeling of the transient condition is: 
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−
 is the constant factor (= 0 to t ≤ t0 and = 1 to t > t0); t0 is the initial time for the variation in 

the heat flow (inertial time, since the heat accumulation capacity of the materials is higher than the heat conduction 

capacity); and 1/t1 and 1/t2 are rate constants of the heat accumulation and heat loss processes.  

When the fuel pellet undergoes a transition from a steady state φ1(r) to another steady state φ2(r) with the thermal 

diffusivity governing the heat conduction equation, the linear heat generating rate is described by the following 

transitory equation  

)().()](1).[(),( 21 trtrtrI ϕφ+ϕ−φ=  (29) 

where φ1 and φ2 are the steady state solutions in the form of Eq. (18) and ϕ given by Eq. (28) is the transitory function 

between states 1 and 2. 

 

2.4. Model Application to the Transient Condition 
 

The temperature response of a fuel rod during reactor shutdown has been measured for many years in the OECD-

Halden Reactor Project (HRP, 1997). It has been shown that the shutdown processes can be characterized by time 

constants which depend on different fuel design, operational parameters, and, among others material properties, the 

irradiation induced degradation of the fuel thermal conductivity. Concurrently, the outlet temperatures of the reactor 

coolant are also measured. The fuel rods in the reactor core are cooled by nucleated boiling and the coolant flow is 

boosted according with the natural convection process. In the scram transient, the stored heat in the fuel rods is the heat 

source and the radioactive decay enhances the asymptotic behavior of the temperature evolution. The transient of the 

coolant temperature in the reactor outlet is given by the equation:  
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cT  is the coolant temperature at time t; 
∞

cT  is the convergence 

temperature of the coolant; 0
c

S
c TT =  is the initial temperature of the coolant; 00 /)( ccco TTTK ∆∆−∆= ∞  is the 

convergence limit (lower than one as the radioactive decay is an additional heat source), and the reference is at 20 oC: 
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00 20 →−=∆ tcc TT  and ( ) ∞→
∞∞ −=∆ trr TT 20  

As indicated by the results in Fig 4 and Table 1, the transitory model fits in well with the temperature of the coolant 

in a fast scram transient.  
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Figure 4. Temperature of the coolant during the reactor scram transient  

 

The transitory model applied to measurements of the centerline temperature of the fuel pellet is shown in the Fig. 5 

and the fitting constants are also given in Table 1. In this case the referential is the outlet temperature of the coolant. 

 

 

Figure 5. Centerline temperature of the fuel pellet during the reactor scram transient 

Table 1 –Fitting constants in the reactor scram transient 

 Coolant Temperature Fuel Centerline Temperature 

 Determ. Coef. R
2 

0.9990 Determ. Coef. R
2 

0.99999 

Variables Fitted St. Error (
o
C) 0.09 Fitted St. Error (

o
C) 1.4 

 Fitting Constants Standard Error Fitting Constants Standard Error 
0

cT∆  (
o
C) 211.7 0.02 950.1 0.9 

∞∆ cT  (
o
C) 13.8 0.19 44.4 0.9 

0t  (s) 10.5 0.81 1.18 0.03 

1t  (s) 8.97 1.0 8.31 0.04 

2t  (s) 158.2 3.9 1.21 0.04 

Number of points: 360 measurements in 180 s 56 measurements in 28 s 
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The fitted K0-values represent the dependence of the radioactive heat decay on the reactor operational power as 

shown in Fig. 6. Values calculated from the rod centerline temperatures and from coolant temperatures of the IFA-597 

experiment are congruent. These results show the fuel rods and, of course, the reactor core as the residual heat source. 

The complementary values (1−Ko) have variations from 3% up to 5% that are consistent with the estimates of residual 

heat decay of the reactor.  

 
Figure 6. Residual heat decay and reactor power 

3. CONCLUSIONS 

The characterization and understanding of the interaction between matter and energy have been developed from 

quantifications of material and physical properties. As quantifications of variations occurred in internal energy states, 

properties and physical characteristics of crystalline solids are interdependent variables of the topological space. Their 

relationships and interdependences are described by means of an intrinsic function in the relative variational model. 

This function and the model characterize and describe the solid in a unified notion. The form of the invariant function 

does not depend on any particular choice of coordinates for the description and characterization of solids because their 

variations have an intrinsic dependence on the internal energy variations.  

The linear relationships between the integrated thermal conductivity I and the density of the heat generating rate Qf  

as well as between the integrated thermal conductivity I and the material capacity to store heat Hv, 

mpv ckdHdI .// ρ==δ , make possible to solve analytically the heat conduction equation in terms of time and spatial 

balance in the conducted heat: )().()](1).[(),( 21 trtrtrI ϕφ+ϕ−φ= . The description of time and spatial variations of the 

temperature derives from the bijective relationships )(ITT =  and )(TII = . 
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