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Abstract. This work is aimed at further advancing a computational procedure for the design of thermal protection 
systems of space vehicles during atmospheric reentry. The Generalized Integral Transform Technique is thus employed 
in obtaining a hybrid numerical-analytical solution for ablation problems with pyrolysis effects, assumed to occur at a 
specified temperature range. The Coupled Integral Equations Approach is employed in lumping the heat conduction 
problem within the region affected by pirolysis, and yielding a formulation of a single region transient heat 
conduction, for the virgin material, with both the pyrolysis and the ablative moving boundaries. The proposed 
approach is demonstrated for a previously studied benchmark case, numerically solved by the finite element method for 
the full local model, using typical thermophysical properties of composite thermal protection materials. Finally, the 
constructed code is verified against another model, also previously developed, for materials that do not undergo 
pyrolysis, by setting the pyrolysis heat equal to zero.  
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Nomenclature 
 

*
pT  - Pyrolysis temperature  Greek letters 
*

abT  - Ablation temperature α - Thermal diffusivity 
T  - Temperature ippβ  - Eigenvalues in pré-pyrolysis period 
L  - Plate thickness ( )ip tβ  - Eigenvalues in pyrolysis period 
q  - Heat flux ( )ia tβ  - Eigenvalues in ablation period 
k  - Thermal conductivity ( )ipp xΨ - Eigenfunctions in pré-pyrolysis period 
cp  - Specific heat ( , )ip x tΨ% - Eigenfunctions in pyrolysis period 
ρ  - Density ( , )ia x tΨ% - Eigenfunctions in ablation period 
( )s t  - Moving boundary position  Subscripts 

H  - Latent heat ab  - relates to ablation 
t  - Time av - relates to average 

( )iTpp t  - Transformed potential in pré-pyrolysis period p - relates to pyrolysis 

( )iTp t  - Transformed potential in pyrolysis period o - relates to initial value 

( )iTa t  - Transformed potential in ablation period v - relates to virgin material 
 
1. INTRODUCTION 
 

The design of recoverable orbital platforms requires the detailed analysis of the heat transfer process during the 
atmospheric reentry portion of the flight, involving the aerodynamic heating estimation and the determination of the 
heat absorbed by the vehicle surface and its interaction with the thermal protection system (TPS), either of the ablative 
or rejection type (Tauber, 1989, Bouilly et al., 1998, Amundsen et al., 2000). Such analysis is in general aimed at 
optimizing the TPS weight while the structure integrity is warranted, according to the thermal restrictions on the 
payload internal environment (Chen & Milos, 1999). 

Besides the accurate characterization of the materials thermophysical properties, there is the need of constructing a 
robust, precise and computationally fast simulation tool, so as to reproduce the complex heat transfer process that 
occurs under such extreme conditions. Such a tool should be able to solve heat conduction problems with high heat flux 
levels, in order to allow for an optimized design of the thermal protection system. Not only the model should encompass 
the major physical phenomena, but the solution procedure itself should have a controllable accuracy, in light of the 
short steep transients and large thermal gradients that are typical of this class of problems.  
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Previous studies on ablative thermal protection systems have addressed the hybrid numerical-analytical solution via 
integral transforms of ablation controlled heat conduction (Ruperti & Cotta, 1991, Cotta, 1993, Cotta & Mikhailov, 
1997, and Cotta, 1998, Gomes et al., 2006), aimed at producing accurate benchmark results for moving boundary 
problems typical of ablative TPS. More recently, improved lumped differential formulations have been proposed 
towards the simplification of the traditional local formulations of ablation problems, which were particularly useful in 
the development of design codes for the optimization of TPS thicknesses in typical reentry flights (Cotta et al., 1992, 
Ruperti Jr. & Cotta, 2000; Cotta et al., 2001, Cotta et al., 2004, Cotta et al., 2006). 

While the approximate lumped formulations are indeed quite cost effective, it is also meritable to seek the 
computational enhancement in terms of processing time, for the more accurate approaches that address the solution of 
the original partial differential equations in this class of problems. Thus, Sias et al. (2005) employed a convergence 
acceleration approach to provide integral transform solutions of the ablation process within reasonable computational 
costs for TPS optimization purposes. Afterwards (Sias et al., 2007) this approach was applied to a more realistic 
ballistic reentry flight configuration, again employing the so-called integral balance technique to speed up the 
convergence of the proposed eigenfunction expansions.  

Pyrolysis is the chemical decomposition of a condensed substance by heating. Extreme pyrolysis, which essentially 
leaves only carbon as the residue, is called carbonization and is also related to the chemical process of charring. Such 
phenomena may occur in a number of composite thermal protection materials, especially those composed of resins and 
high temperature fillers, and should be modeled for a representative simulation of thermal protections that employ such 
class of materials. Following the developments in (Sias et al., 2007) the present work implements the ablative TPS 
problem solution by including the pyrolysis effects, assumed to occur within a known temperature range. The proposed 
model derives its basis from that proposed by (Hogge & Gerrekens, 1982), which also assumes a temperature range for 
the pyrolysis effects, but neglects the mass flow rate effects due to the gases production within the medium.  

Thus, the present work reports the attempt of implementing an accurate treatment of the ablation problem with 
pyrolysis by making use of the Generalized Integral Transform Technique, but still to within a reasonable low 
computational cost, aimed at its utilization in a TPS design code (Cotta et al. 2004). For this purpose, a convergence 
acceleration technique was employed, which essentially reduces the number of terms required in the eigenfunction 
expansions. The technique is called the integral balance approach, and has been employed in several previous 
developments in heat and mass transfer  (Scofano Neto et al., 1990, Leiroz & Cotta, 1990, Cotta, 1993). In addition the 
problem formulation is simplified within the region that undergoes pyrolysis, by implementing an improved lumped 
differential reformulation via the so called Coupled Integral Equations Approach (CIEA), (Cotta & Mikhailov, 1997; 
Ruperti & Cotta, 2000), which basically lumps the region where the material changes properties with respect to the 
virgin material characteristics due to pyrolysis. Thus, this region is reformulated as a boundary condition for the local 
conduction problem in the virgin TPS, which recognizes the advancement of two different fronts, the pyrolysis and 
ablation fronts. 
 
3. ANALYSIS 
 

We consider one-dimensional transient heat conduction within a slab, representing a layer of thermal protection 
material applied over the nose surface of space vehicles that undergo atmospheric reentry aerodynamic heating. As the 
wall heat flux increases through the increasingly denser atmosphere, the wall temperature reaches a certain level when 
pyrolysis starts occurring, with the thermal, mechanical and chemical degradation of the virgin material, and this front 
progressively moves into the TPS layer thickness. As the heat load progresses, the material that already went through 
pyrolysis initiates the ablation process itself, again after a certain temperature level, characterized by an ablation 
temperature, while the ablative recession boundary is represented by the energy balance at this moving interface. 

Thus, the problem is formulated for three different stages in the time variable, a pre-pyrolysis period, when the 
temperatures within the virgin material are below the pyrolysis value, a pyrolysis period when this phenomenon is 
started but ablation is not yet present, and finally the ablation period, when pyrolysis and ablation are simultaneously 
active over the TPS. The first period is essentially formulated as a linear heat conduction problem, for which an 
analytical solution is readily obtainable via the classical integral transform method. The other two periods involve, 
respectively, one or two moving boundaries, which are to be determined together with the temperature fields, which 
turns these formulation nonlinear in nature, due to the a priori unknown domain limits. For solving the heat transfer 
problem within these regions, we shall recall the Generalized Integral Transform Technique (GITT) (Cotta, 1993, Cotta 
& Mikhailov, 1997, Cotta, 1998); for handling the more involved heat conduction problems. Also, the present 
contribution takes advantage of an improved lumped-differential reformulation tool, the Coupled Integral Equations 
Approach (CIEA), (Cotta & Mikhailov, 1997; Ruperti & Cotta, 2000), to rewrite the pyrolysis region conduction 
problem as an energy balance for the virgin material boundary condition within the pyrolysis and ablation periods. In 
this sense, the problem formulation is significantly simplified, since a local solution is required only for the virgin 
material, where the temperature gradients are most significant and the lumping type approaches become less accurate. 
Therefore, the problem formulation for the three periods in time is written as: 
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Pyrolysis period 
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Energy balance at pyrolysis interface 
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Ablation period 
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Energy balance at ablation interface 
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where w ( )q t  is the wall heat flux at the TPS external surface due to aerodynamic heating, p ( )T x%  is the initial 

temperature distribution in the virgin material for the pyrolysis period, p ( )T x%%  p ( )T x%  is the initial temperature 



distribution in the virgin material for the ablation period, ab ( )T x  p ( )T x%  is the initial temperature distribution in the 
pyrolysis region for the ablation period, and abs  is the position of the pyrolysis interface in the beginning of the ablation 
period, as obtained from the solution of the previous period. 

The pre-pyrolysis period is readily solved through the classical integral transform method (Cotta, 1993), adopting 
the following integral transform pair: 
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where ( ) cos( )i ipp x xβΨ =  are the eigenfunctions obtained through separation of variables applied on the homogeneous 
version of problem (1), iNpp  are the norms, ( )iTpp t  are the transformed potentials, and the eigenvalues index i starts 
from zero due to the second type boundary conditions on both ends of the medium. The transformed potentials are 
readily obtained in explicit form and the temperature in the virgin material for the pre-pyrolysis period is given by: 
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where ippβ  are the eigenvalues, and the contribution of the first eigenvalue, 0 0ppβ = , is already split as the average 
temperature evolution, av ( )T t , given as:  
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In order to determine the time required for the pyrolysis initiation, pt , we let x L=  in eq.(7), for the surface 

temperature value equal to the pyrolysis temperature, *
pT , which corresponds to *

v p p( , )T L t T= , and then pt  is computed 
from the following transcendental equation: 
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Once the pyrolysis initiation temperature has been identified, we need now to handle the pyrolysis period governing 

equations, eqs.(2) and (3). Here, we have chosen to simplify the problem formulation in the pyrolysis region, by 
employing a 1,1 0,0H H improved lumped formulation as provided by the Coupled Integral Equations Approach, CIEA 
(Cotta & Mikhailov, 1997; Ruperti & Cotta, 2000), resulting in an ordinary differential equation for the average 
temperature evolution within the pyrolysis region, and a modified equation for the pyrolysis interface movement. Thus, 
after the simple filtering for homogenization purposes, shown below:  
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eqs.(2,3) for the virgin material, pyrolysis region and pyrolysis moving boundary are rewritten as: 
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In attempting to solve eq.(11a) for the virgin material through integral transforms, it becomes evident that the 

eigenvalue problem is now a time-dependent one, which does not permit the decoupling integral transformation of the 
transient term. Thus, the ideas in the Generalized Integral Transform Technique (GITT) are recalled, (Cotta, 1993, Cotta 
& Mikhailov, 1997, Cotta, 1998), as will be briefly illustrated in what follows. The integral transform pair becomes: 
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where a symmetric kernel has been adopted, and the normalized eigenfunctions, ( , )ip x tΨ% , are written as: 
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and ( )iNp t  is the normalization integral and ( )iTp t are the transformed potentials in pyrolysis period, to be determined. 
The time-dependent eigenvalues due to the moving boundary are explicitly obtained as:  
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The integral transformation process as applied to eqs.(11a,c,e,f) above, then results in a coupled system of ordinary 

differential equations for the transformed temperatures in the virgin material:  
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which are to be simultaneously solved with the equation for the average temperature in the pyrolysis region, 
eqs.(11b,d), and the equation for the pyrolysis interface position, eq.(12). In order to avoid the direct substitution of the 
inverse formula, eq.(13b), in the temperature space derivative required in eq.(12a), the integral balance approach was 
employed (Cotta & Mikhailov, 1997; Sias et al., 2005 e 2007), so as to accelerate convergence of this eigenfunction 
expansions for the temperature derivatives, resulting in the following improved expression for the pyrolysis interface 
movement: 
 

( )p p *w
v p avp p

p

v v p ab
1 1

p ab

( ) 3( )
( )

2 ( )

( )
                      ( ) ( ) ( ) ( ) ,      

( )

j
j j jk k

j k

ds t kq t
H T t T

dt L s t

dI p t
cp Tp t I p t A t Tp t t t t

dt

s t L

ρ

ρ
∞ ∞

= =

= − − +
−

⎛ ⎞Ψ
− Ψ < <⎜ ⎟⎜ ⎟

⎝ ⎠
=

∑ ∑
%

%  
(17a,b) 

 
The coefficients in the transformed system are readily obtained in analytical form from the integral relations below, 

employing symbolic computation: 
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Once the pyrolysis period transformed system, eqs.(11b,d), (16a,b) e (17a,b), has been numerically solved under 
controlled accuracy by the NDSolve routine of the Mathematica system, (Wolfram, 2005), one readily reconstructs the 
virgin material temperature distribution from the inverse formula, eq.(13b). In order to compute the time required for 
the onset of ablation, abt , one takes the lumped relation that provides the average temperature at the pyrolysis region, 

avp ( )T t , given by the H1,1 approximation as: 
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Then we let *

p ab( , )T L t T= , and abt  is then computed from the formed transcendental equation. Once the ablation 
initiation is identified, we need to proceed towards the solution of the ablation period formulation. Again, the same 
improved lumped-differential reformulation is applied to the pyrolysis region, which is now bounded by the two 
moving boundaries, the pyrolysis and ablation interfaces. The same filtering is adopted, eq.(10), and eqs.(4,5) are 
rewritten as:  
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Similarly to the solution of the pyrolysis period, a time-dependent eigenvalue problem is chosen, due to the moving 

pyrolysis interface, p ( )s t , and the Generalized Integral Transform Technique, GITT, (Cotta, 1993, Cotta & Mikhailov, 
1997, Cotta, 1998), is again employed. The integral transformation pair is proposed as: 
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where again a symmetric kernel was prefered in terms of the normalized eigenfunctions, ( , )ia x tΨ% , also given as in 
eq.(14), ( )( , ) cos ( )i ia x t a t xβΨ = , and ( )iNa t  is the nome and ( )iTa t  the transformed potentials for the ablation 
period, to be determined. The eigenvalues ( )ia tβ , are then given by eq.(15). 

The integral transformation procedure is applied to eqs.(20a,c,e,f) above, providing the following system of coupled 
ordinary differential equations for the transformed temperatures in the virgin material: 
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which needs to be solved simultaneously with the equation for the average temperatue in pyrolysis region, eqs.(20b,d), 
and the equations for the movement of the pyrolysis and ablation interfaces, eqs.(21). Again, to avoid the use of the 
inverse formula in the temperature derivative within eq.(21a), the integral balance approach is applied (Cotta e 
Mikhailov, 1997; Sias et al., 2005 e 2007) so as to accelerate the convergence of this particular eigenfunction expansion 
which is expected to be slower than the temperature expansion. Obtém-se, então, a equação otimizada para a fronteira 
de pirólise: 
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The transformed coefficients are symbolically obtained from the integral relations below:  
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4. RESULTS AND DISCUSSION 
 

Numerical results were obtained to illustrate the approach here proposed, following the test case for ablation with 
pyrolysis effects, as presented in (Hogge & Guerrekens, 1982). The numerical solution of the transformed ODE systems 
was achieved by making use of the NDSolve routine in platform Mathematica v5.2, (Wolfram, 2005). In solving 
ODE´s, the function NDSolve by default uses the algorithm LSODA (Hindmarsh, 1983), alternating between Adams 
method (predictor-corrector of orders 1 to 12) and the backward differentiation method of Gear (Wolfram, 2005). The 
function NDSolve also allows the direct specification of a method to be used, which is particularly useful in the solution 
of systems that are a priori known to be stiff. The option “BDF” forces the use of the backward differentiation 
algorithm, with orders from 1 to 5, which is well-known for its robustness in the solution of stiff systems. A previous 
analysis of the different possible schemes in the function NDSolve (Sias et al., 2005), led us to the use of the option 
“BDF” in light of the marked stiffness of the resulting transformed systems in this eigenfunction expansion approach. 

In order to allow for direct comparison with the results in (Hogge & Guerrekens, 1982), the following 
dimensionless variables have been computed and reported: 
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The physical data adopted in (Hogge & Guerrekens, 1982), although with some questionable numerical values, 

have been here employed for comparison purposes, as summarized below: 

0.4L cm= ; 3v 0.00165kg
cmρ = ; 3p 0.00133 kg

cmρ =  3v v 0.64P
Jc cm Kρ = ; 3p p 0.424P

Jc cm Kρ =  

3
v 2.13 10 Wk x cm K

−= ; 3
p 3.20 10 Wk x cm K

−= ; 3v P 711JH cmρ = ; 3p ab 4090 JH cmρ = ;  

p 2355T K= ; ab 8367T K= ; 2w0 500kWq cm=  

Also, Figure 1 illlustrates the thermophysical properties variation in the transition between the virgin material and 
pyrolysis region, as from the data in (Hogge & Guerrekens, 1982). 

Table 1 ilustrates the convergence behavior of the pyrolysis interface position along the pyrolysis period, prior to 
the onset of ablation, relative to the outer surface of the slab, p1 ( )η τ− , where the dimensionless time for the pyrolysis 
initiation has been determined as p 0.00026219τ = . This parameter was chosen to illustrate convergence in this period, 
in light of its importance in the design of thermal protection systems. One immediately concludes that the results for the 
dimensionless position of the pyrolysis front is converged to ±1 on the fifth significant digit up to N=60, and to much 
lower truncation orders, N=20, if three significant digits are considered sufficient for the prediction of this quantity, 
which might suffice for most design computational tools. Table 2 provides a direct comparison of these converged 



results for the dimensionless interface position and its velocity, p ( )η τ  and p ( )η τ& , of the present GITT results and the 
numerical results of Hogge & Guerrekens(1982). From the columns that stand for the relative deviation between these 
two sets of results, we may observe the decreasing deviation between the two approaches as the pyrolysis front 
advances, for both the dimensionless position and velocity. 
 

(a) (b)  
o( ) ( )k T k Tφ=                                                      ( )o

( ) ( )cp T cp Tρ ρ φ=  
Figure 1. (a) Thermal conductivity variation and (b) thermal capacity variation between virgin material and 

pyrolysis region (Hogge & Guerrekens, 1982). 
 
Table 1 – Convergence of the solution for the pyrolysis interface position with respect to the outer surface, 

p1 ( )η τ− , along the pyrolysis period, for increasing truncation orders in the eigenfunction expansions. 

Time Truncation order N  
τ  10 20 30 40 50 60 70 80 90 100 

.000959 .980870 .983950 .984658 .984828 .984883 .984905 .984915 .984920 .984925 .984925 

.001655 .965027 .968332 .968945 .969095 .969142 .969165 .969173 .969178 .969180 .969183 

.002352 .950683 .953785 .954335 .954475 .954518 .954538 .954545 .954550 .954553 .954555 

.003048 .937295 .940153 .940663 .940793 .940833 .940850 .940857 .940862 .940865 .940868 

.003745 .924622 .927275 .927753 .927873 .927913 .927927 .927935 .927940 .927945 .927942 

.004441 .912533 .915023 .915475 .915588 .915625 .915640 .915648 .915653 .915655 .915655 

.005138 .900940 .903298 .903730 .903838 .903873 .903888 .903895 .903898 .903900 .903903 

.005834 .889780 .892030 .892443 .892547 .892583 .892595 .892603 .892605 .892608 .892610 

.006531 .879005 .881163 .881560 .881660 .881693 .881708 .881713 .881717 .881717 .881720 

.007227 .868567 .870648 .871032 .871130 .871160 .871172 .871180 .871183 .871185 .871188 
 

Table 2 – Relative deviation between GITT solution with finite elements results (Hogge & Guerrekens, 1982) for 
the pyrolysis interface position and its velocity, p ( )η τ  e p ( )η τ&  

Time p ( )η τ  p ( )η τ&  

τ  
GITT - 

pyrolysis 
period 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

GITT - 
pyrolysis 
period 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

0.001 0.01599 0.01376 16.21 0.57313 0.48986 17.00 
0.002 0.03819 0.03193 19.61 0.43824 0.41742 4.99 
0.003 0.05821 0.04888 19.09 0.39952 0.38484 3.81 
0.004 0.07663 0.06702 14.34 0.37045 0.36013 2.87 
0.005 0.09381 0.08462 10.86 0.34772 0.34344 1.25 
0.006 0.11002 0.10095 8.98 0.32926 0.32869 0.17 
0.007 0.12542 0.11600 8.12 0.31385 0.31153 0.74 
0.008 0.14013 0.13099 6.98 0.30071 0.29940 0.44 

 
Figure 2 graphically shows the behavior of the interface position and its velocity, p ( )η τ  and p ( )τη& , as compared to 

the numerical solution of (Hogge & Guerrekens, 1982), computed for the full differential formulation of the problem, 
from the data in Table 2 above, where again we may notice the better agreement for the larger values of dimensionless 
time. Figure 3 shows the dimensionless average temperature distribution in the pyrolysis region, avp ( )τΘ , again 
compared against the finite element results of (Hogge & Guerrekens, 1982) in dimensionless form. A truncation order 
of N=100 terms was employed in such simulations, though the results are converged to the graph scale at much lower 
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systems sizes. The agreement between the two independent solutions for the average pyrolysis region temperature is 
excellent, and provides the necessary confidence for the extension of the analysis towards the ablative period. Table 3 
shows the numerical values for this comparison of the average pyrolysis region temperature, avp ( )τΘ , and provides the 
estimates of the relative deviations between the two sets of results. One again observes a decreasing relative deviation 
as the pyrolysis interface progresses, and a maximum deviation of around 2% in this range of dimensionless time. 

 

 
Figure 2. Comparison of GITT and finite element 
results for the pyrolysis interface position and its 

velocity, p ( )η τ and p ( )η τ& , along the pyrolysis period. 

Figure 3. Comparison of GITT and finite element results 
for the dimensionless average pyrolysis region 

temperature, avp ( )τΘ , along the pyrolysis period. 
 

Table 3 – Relative deviation between GITT and finite element results for the dimensionless average pyrolysis 
region temperature, avp ( )τΘ , along the pyrolysis period. 

Tempo avp ( )τΘ  

τ  GITT - pyrolysis period Hogge & Guerrekens(1982) Relative 
deviation% 

0.0025 2.46387 2.52036 -2.24 
0.0050 3.61949 3.67786 -1.59 
0.0075 4.54265 4.59697 -1.18 
0.0100 5.33637 5.36292 -0.50 
0.0125 6.04443 6.03849 0.10 
0.0150 6.69032 6.69103 -0.01 
0.0175 7.28837 7.27865 0.13 
0.0200 7.84810 7.82049 0.35 

 
Tables 4 and 5 illustrate the convergence behavior of the pyrolysis and the ablation interfaces positions along the 

ablation period, relative to the outer surface of the slab, p1 ( )η τ−  and ab1 ( )η τ− , where the dimensionless time for the 
ablation initiation has been determined as ab 0.007227τ = . Clearly, both interfaces positions are fully converged to six 
significant digits for truncation orders of N=45, and the lower truncation orders, N=12, already provide at least three 
fully converged significant digits, throughout the ablative period. Thus, it can be anticipated that fairly low truncation 
orders, and therefore low computational costs, can be achieved in the realm of application to an actual TPS optimization 
computational task. 

Figure 4 illustrates the movement of the pyrolysis and ablation interfaces, since the beginning of the pyrolysis 
period, and compares the results obtained with GITT against those provided by (Hogge & Guerrekens, 1982). Both 
curves for p ( )η τ  e ab ( )η τ , show an overall good adherence with (Hogge & Guerrekens, 1982), but with a noticeable 
increasing deviation of the pyrolysis interface position for the larger times within the ablation period. Here, with the 
advancement of the ablation front, the temperature gradients within the pyrolysis region can be increasing significantly 
with the narrowing of the pyrolysis region, which makes the lumped formulation less accurate in this phase of the heat 
transfer process. Figure 5, which corresponds to the dimensionless interfaces velocities throughout the process, 
indicates that the velocity of the ablation front is also affected by the narrowing of the pyrolysis region at the later 
stages of the ablative period, with a more noticeable deviation between the two sets of results. 



Table 4 - Convergence of the solution for the pyrolysis interface position with respect to the outer surface, 
p1 ( )η τ− , along the ablation period, for increasing truncation orders in the eigenfunction expansions. 

Time Truncation order N  
t  12 23 34 45 56 67 78 89 100 

.007227 .871188 .871188 .871188 .871188 .871188 .871188 .871188 .871188 .871188 

.007909 .861070 .861203 .861220 .861223 .861225 .861225 .861225 .861225 .861228 

.008591 .851463 .851617 .851628 .851640 .851640 .851643 .851643 .851643 .851643 

.009273 .842177 .842335 .842345 .842358 .842358 .842360 .842360 .842360 .842360 

.009956 .833133 .833290 .833300 .833312 .833315 .833315 .833315 .833315 .833315 

.010638 .824282 .824440 .824450 .824463 .824465 .824465 .824465 .824465 .824465 

.011320 .815595 .815750 .815760 .815773 .815775 .815775 .815775 .815775 .815775 

.012002 .807043 .807198 .807208 .807220 .807220 .807223 .807223 .807223 .807223 

.012684 .798607 .798760 .798773 .798783 .798785 .798785 .798785 .798785 .798788 

.013366 .790275 .790428 .790437 .790450 .790450 .790450 .790453 .790453 .790453 

.014049 .782033 .782183 .782193 .782205 .782205 .782208 .782208 .782208 .782208 
 

Table 5 - Convergence of the solution for the ablation interface position with respect to the outer surface, 
ab1 ( )η τ− , along the ablation period, for increasing truncation orders in the eigenfunction expansions. 

Time Truncation order N  
t  12 23 34 45 56 67 78 89 100 

.007227 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 

.007909 .999560 .999553 .999550 .999550 .999550 .999550 .999550 .999550 .999550 

.008591 .998383 .998368 .998365 .998365 .998365 .998365 .998365 .998365 .998365 

.009273 .996630 .996617 .996615 .996615 .996615 .996615 .996615 .996615 .996615 

.009956 .994415 .994407 .994405 .994407 .994407 .994407 .994407 .994407 .994407 

.010638 .991823 .991818 .991815 .991818 .991818 .991818 .991818 .991818 .991818 

.011320 .988905 .988908 .988905 .988908 .988908 .988908 .988908 .988908 .988908 

.012002 .985710 .985718 .985718 .985720 .985720 .985720 .985720 .985720 .985720 

.012684 .982275 .982288 .982285 .982290 .982290 .982290 .982290 .982290 .982290 

.013366 .978623 .978640 .978640 .978645 .978645 .978645 .978645 .978645 .978645 

.014049 .974783 .974805 .974803 .974808 .974808 .974808 .974808 .974808 .974808 
 

Figure 4. Comparison of GITT and finite element 
results for the pyrolysis and ablation interfaces 

positions, p ( )η τ and ab ( )η τ , along the ablation period. 

Figure 5. Comparison of GITT and finite element 
results for the pyrolysis and ablation interfaces 

velocities, p ( )η τ& and p ( )η τ& , along the ablation period. 
 
Tables 6 and 7 below quantify these deviations between the present GITT/CIEA solution against the numerical 

solution of the local model in Hogge & Guerrekens(1982), respectively, for the interfaces positions and velocities. It 
then becomes more evident the progressive increase in the deviations for both the interface positions and their 
velocities, as the ablation front moves inward, narrowing the pyrolysis region and promoting very large temperature 
gradients in this region.  
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Table 6 – Relative deviations between GITT solution and finite elements results (Hogge & Guerrekens, 1982) for 
pyrolysis and ablation interfaces positions, p ( )η τ  and ab ( )η τ , along the pyrolysis and ablation periods. 

Time p ( )η τ  ab ( )η τ  
τ  GITT - 

pyrolysis and 
ablation 
periods 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

GITT - 
pyrolysis and 

ablation 
periods 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

0.0025 0.04843 0.03976 21.81 - - - 
0.0050 0.09382 0.08202 14.39 - - - 
0.0075 0.13285 0.12152 9.32 - - - 
0.0100 0.16727 0.15552 7.56 0.00575 0.00595 -3.36 
0.0125 0.19895 0.18350 8.42 0.01676 0.01720 -2.56 
0.0150 0.22916 0.21306 7.56 0.03082 0.03005 2.56 
0.0175 0.25844 0.23559 9.70 0.04692 0.04410 6.39 
0.0200 0.28706 0.25961 10.57 0.06450 0.05810 11.02 

 
Table 7 – Relative deviations between GITT solution and finite elements results (Hogge & Guerrekens, 1982) for 

pyrolysis and ablation interfaces velocities, p ( )η τ&  and ab ( )η τ& , along the pyrolysis and ablation periods. 

Tempo p ( )η τ&   ab ( )η τ&   
τ  GITT - 

pyrolysis and 
ablation 
periods 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

GITT - 
pyrolysis and 

ablation 
periods 

Hogge & 
Guerrekens(1982) 

Relative 
deviation% 

0,0025 0.41741 0.39975 4.42 - -  
0,0050 0.34771 0.34362 1.19 - -  
0,0075 0.30597 0.30863 -0.86 - -  
0,0100 0.27316 0.28506 -4.17 0.07446 0.06321 17.80 
0,0125 0.25733 0.26885 -4.28 0.10657 0.08804 21.05 
0,0150 0.24783 0.25161 -1.50 0.12690 0.10315 23.02 
0,0175 0.24139 0.24017 4.42 0.14116 0.11393 23.90 
0,0200 0.23670 0.23238 1.19 0.15183 0.12011 26.41 

 
A final verification of the implemented approach is provided by comparing the present results with the simulation 

of (Sias et al., 2007), also undertaken under a GITT/CIEA modeling, for materials that do not undergo pyrolysis, and 
ablation is the only recession front to be considered. In order to reproduce the results in (Sias et al., 2007), we let the 
pyrolysis heat to be null ( p 0H = ) in the present code, and Figure 6 illustrates the perfect matching of the ablation 
interface position and velocity as computed through the two models, along the whole ablation period. 

 
Figure 6. Comparison of model for materials without pyrolysis and present implementation with p 0H =  
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