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Abstract. Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the 
identification of mathematical models typically nonlinear systems is vital in many fields of engineering. A variety of 
system identification techniques are applied to the modeling of processes dynamics. Recently, the identification of 
nonlinear systems by artificial neural networks has been successfully applied.  In this paper, an original approach 
based on radial basis function neural network (RBF-NN) with a training method based on particle swarm optimization 
(PSO) is proposed as an alternative solution. RBF-NN is considered as a good candidate for the prediction problems 
due to its rapid learning capacity and, therefore, has been applied successfully to nonlinear time series modeling and 
nonlinear identification. On the other hand, PSO was inspired by the choreography of a bird flock and can be seen as 
a distributed behavior algorithm that performs multidimensional search. The RBF-NN model is trained and validated 
based on the experimental data of a nonlinear process. Finally, simulation results from the performance analysis of 
RBF-NN are presented and discussed. 
 
Keywords: nonlinear identification, radial basis function neural networks, nonlinear processes, particle swarm 
optimization. 

 
1. INTRODUCTION 
 

The mathematical description of dynamic systems is not a simple task in which basic principles can be used. For 
complex systems, modeling using basic laws to determine the dynamic behavior of a system is not always possible. An 
interesting alternative to solve such problems would be an approach for systems identification. A model based in an 
input-output system must be found, seeking a relation between them (Coelho and Guerra, 2002).  

In real life, most systems are nonlinear and the use of linear models is limited, because they cannot represent the 
system dynamics, such as its hysteresis, amplitude dependency, bifurcations or chaos (Ivankhnenko, 1971). This 
characteristics describes a nonlinear system and it is necessary the development of techniques that model such behavior. 
A particular area of nonlinear system identification is the chaotic modeling. Several researches have approached 
problem in classification, analysis, comprehension and control chaotic systems (Alligood et al., 1996; Ioh et al., 2001). 

Nonlinear systems identification is normally a difficult task. When the system is dissipative, to develop a model 
through experimental data became a challenge due to its nature. The use of neural networks to nonlinear identification 
problems has attracted some attention in recent years. Neural networks are originally inspired by biologic neural 
networks’ functionality that may learn complex functional relations through a limited number of training data. Neural 
networks may serve as black-box models of nonlinear multivariable dynamic systems and may be trained using input-
output data, observed from the system (Mcloone et al., 1998; Narendra and Parthasarathy, 1990). The usual neural 
network consists of multiple simple processing elements, called neurons, interconnections among them and the weights 
attributed to the interconnections. The relevant information of such methodology is stored in the weights (Haykin, 2000; 
Pei and He, 1999; Huang and Loh, 2001; Lian and Liu, 2000). 

The main objective of this paper is to present an optimization approach for nonlinear identification using radial basis 
function neural network (RBF-NN) of heating system. The RBF-NN uses the c-means clustering algorithm, and is 
optimized by pseudo-inverse and particle swarm optimization (PSO). 

The reminder of the paper is organized as follows. In section 2, the heating system process is presented. In section 3, 
the one-step-ahead prediction for system identification with RBF-NN with a training method based on PSO is 
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discussed. The simulation results are presented in section 4. The conclusions and future works are discussed in section 
5. 

 
2. HEATING SYSTEM PROCESS 
 

The identification case study evaluated in this paper is a nonlinear dynamic system of a heating process. The system 
is an experiment with single-input-single-output heating system. The input drives a 300 Watt Halogen lamp, suspended 
several inches above a thin steel plate. The output is a thermocouple measurement taken from the back of the plate. The 
sampling interval is 2 seconds and the number of samples is 801. Figures 1 and 2 illustrated the input drive voltage and 
the output temperature in Celsius degrees of this case study. The database used is called DaISy: Database for the 
Identification of Systems (De Moor, 2009). 
 

 
 

Figure 1. Input drive voltage 
 

 
Figure 2. Output temperature in Celsius degrees 
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3. SYSTEM IDENTIFICATION AND RBF-NN WITH A TRAINING  METHOD BASED ON PSO 
 

The process identification is a procedure to identify an unknown model for forecast and/or understanding of the 
dynamic behavior of the process. A model describes reality in some way, and system identification is the theory of how 
mathematical models for dynamical systems are constructed from observed data. Typically, a parameterized set of 
models, a model structure, is hypothesized and data is used to find the best model within this set according to some 
criterion. The choice of model structure is guided by prior knowledge or assumptions about the system which generated 
the data. When little prior knowledge is available it is common to use a black-box model. A black-box model is a 
standard flexible structure and it can be used to approximate a large variety of different systems (Sjöberg, 1995). Neural 
network models have proven to be successful non-linear black-box model structures in many applications (Hong and 
Chen, 2009; Huang and Du, 2008; Li et al., 2009; Pappala et al., 2009). 
 
3.1. Fundamentals of RBF-NN 

 
Neural networks consist of highly interconnected processing elements called neurons. Each neuron has several 

inputs and one output. The output of each neuron is determined as a nonlinear function of weighted sum of the inputs, 
however more complex mathematical operations could be included. The neurons are interconnected through weights, 
which are adjusted during the period of training.  

Among the excellent characteristics of the neural networks there are: parallel processing, learning, associative and 
distributed memory. These characteristics are inspired in the biological neural networks (Bortman and Aladjem, 2009). 
Accordingly, RBF-NN is widely used in identification of nonlinear systems. The key problems of RBF-NN are the 
following: determining centers and widths of radial basic function, the number of hidden nodes, weights between 
hidden layer and output layer and the parameters of hidden layer are optimized locally, not globally (Chen et al., 2007; 
Hong and Chen, 2009). 

There are several representations for nonlinear system modeling. In this application we have chosen RBF-NN. RN-
RBF design can be seen as a curve adjustment problem (function approximation problem) in a high dimensional space. 
The radial basis function (or activation function) used in RBF-NN is Gaussian type as illustrated in Eq. (1). The 
estimated output is shown in Eq. (2) (Chen et al., 2007; Huang and Wang, 2007). 
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where xi is the input vector, cj is the activation function center (Gaussian) and σj is the standard deviation. 
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where m is the number of clusters (neurons), wm is the weights and km is the hidden layer output. 
 The clustering method used in this application by the RBF-NN for classification problems is fuzzy c-means 
algorithm (FCM), which was developed by (Dunn, 1973) and improved by (Bezdek, 1981). This algorithm is frequently 
used for standards recognition and is based on minimize of the objective function given by Eq (3): 
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 where iju  is the degree of the set jx  in the group j , ix  is the element i  of the measured data, jc  is the center of the 

group j , the parameter m  is a weight that determines the degree to which partial members of a cluster affect the 

clustering result and .  is the norm between measured data and the center. The update of iju  and jc  is given by Eq. 

(4): 
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3.2. Particle Swarm Optimization Algorithm 
  
 The PSO is responsible for optimizing the Gaussian spreads. It’s has a population with random positions, each of 
these particles has a velocity, and the particles “fly” around the search space. The particles store their best position in 
their memory (pbest) and also the fitness in this point (Chen et al., 2007; Huang and Wang, 2007). 
 The best pbest of all swarm is denominated as the best global position (gbest) (Gudise and Venayagamoorthy, 
2003). The basic concept of PSO is to accelerate particles toward pbest and gbest, weighted by an acceleration factor at 
each time step. Mathematically, a particle follows these equations: 
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where 1=∆t , t represents the actual iteration and t+1 represents the next iteration Vid and X id represents the  particles 
velocity and position, rand1 and rand2 are random numbers between [0,1], used to maintain the population diversity. 
Equation (6) is used to update each particle’s speed, for it calculation the speed in last iteration, multiplied by an inertial 
weight (Lin et al, 2006).  
 The second factor is composed by a cognition part, the basis is the difference between the actual position of the 
particle and the best position it has achieved in history (pbest). The last factor is composed by a social component, the 
calculus basis is the particle actual position and the best position achieved by any particle in the algorithm execution 
(gbest). 
 Equation (7) represents the update position of a particle, according with its previous position and its actual speed, 
considering 1=∆t . One of the main reasons for the PSO attractiveness is the need to adjust few parameters (Xie, et al., 
2002). 
 Constants c1 and c2 are positive constants denominated cognition and social components, respectively. These are the 
acceleration constants, varying the speed of the particle toward pbest and gbest, according to past experience. Constants 
c1 and c2 are not critical factors to algorithm convergence. However, a fine tuning of such values may cause a faster 
convergence. Values of c1 and c2 are assumed as 2.0, according to Gaing (1994). But recent researches inform that the 
choice may be even better if the cognition parameter is higher than a social parameter, inside the limits 421 ≤+ cc  

(Parsopoulos and Vrahatis, 2002). 
 The use of W, called inertial weight is proposed by Shi and Eberhart (1998). This parameter is responsible for a 
dynamic adjustment of the particle speed, so, it’s responsible for balancing the research performed by the algorithm 
between a local and a global one, making possible to the algorithm converge in a smaller number of iterations. A higher 
value of inertial weight makes possible a global search, on the other side, a small value takes the algorithm into a local 
search. 
 Through a dynamical adjustment of the inertial weight, it’s possible to dynamically adjust the search capability. 
Once the PSO search process is nonlinear and complex, it is hard, if not impossible, to mathematically model the search 
capability to dynamically adjust the inertial weight, so, a fixed or a linearly decaying inertial weight may be adopted. 
Other alternatives for dynamical adjustment or W are the adoption of co-evolution, meta-optimization of fuzzy systems 
(Xiao and Wang, 2006; Zhan et al., 2009).  
 Application of a high value of inertial weight at the start and decaying until a small value through the PSO 
execution causes the algorithm to own global search characteristics at the start and local search characteristics in the end 
of the execution. The value of W decaying from a maximum value of 0.9 towards a minimum value of 0.4 through the 
execution is a good call. When adopting linearly decaying inertial weights, normally Eq. (8) is adopted, for W update, 
where itermax is the maximum number of iterations and iter is the actual iteration (Shi and Eberhart, 2002). 
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 The linear optimization method to make linear parameters of RBF-NN, in this application, is the pseudo-inverse. 
The update of each weight for training RBF-NN using this derivation of least mean squares is realized by Eq. (9), 
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where y(t) is the desired output.  
 The performance criteria evaluated for the dynamic system to be identified is the multiple correlation coefficient, 

2R , between real output y(t) and the estimated output )(ˆ ty , is realized by Eq. (10), 
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where n is the number of measured samples of the process output. 
 When the value of 2R  is equal to 1.0, indicates an exact fit of the model to the process’ measured data. The value of 

2R  between 0.9 and 1.0 is considered enough for practical applications, in control systems (Schaible et al., 1997). 
 
4. RESULTS 

 
 In Table 1, the Heating system identification results using a radial basis function neural network using c-means for 
clustering and optimized by pseudo-inverse and PSO with concepts of one-step-ahead prediction are presented. In the 
estimation phase (training of RBF-NN) were used 400 samples, and in the validation phase were used 401 samples.  
 For the results, were performed 10 simulations with different numbers of delayed inputs (Nu), delayed outputs (Ny) 
and centers. Table 1 contains 5 simulations using Nu equal to 2, Ny equal to 1 and the number of centers was simulated 
with 2, 3, 4, 5 and 6. The Table 1 contains 5 simulations using Nu equal to 2, Ny equal to 1 and the number of centers 
was simulated with 2, 3, 4, 5 and 6. The Table 2 also contains 5 simulations, but changing the Ny to 2. The results 

obtained for these simulations are the 2
estR and 2

valR  (estimation and validation phases). 

 On the Table 1, the best result was found in simulation 4, and the Fig. 3 illustrated the real and estimated output 
graphic of the heating system. And on the Table 2, the best result was found in simulation 9, and the Fig. 4 illustrated 
the real and estimated output graphic. Every simulation was included at least one delayed output to the RBF-NN, 
therefore improving the results. The reason for this improvement is that the RBF-NN obtains more information about 
the nonlinear dynamic, improving one-step-ahead identification. But special care must be taken, because when the 
number of Nu and Ny increases, the complexity of the model increases too. 

 
Table 1. Experimental results with different numbers of centers, 2 inputs delayed, 1 output delayed using RBF-NN with 

a training method based on PSO. 
 

Number of 
simulation 

Nu Ny 
Number of 

centers 
2
estR  2

valR  

1 2 1 2 0.8599 0.7106 

2 2 1 3 0.9999 0.9997 

3 2 1 4 0.9999 0.9998 

4 2 1 5 0.9999 0.9998 

5 2 1 6 0.9999 0.9997 
 

Table 2. Gaussian centers of the best simulation (simulation 4). 
 

Cluster 
cj center of  

u(t-2) 
u(t-1) y(t-1) 

1 1.0000 0.9997 0.9707 

2 0.4439 0.4436 0.6165 

3 0.4441 0.4440 0.4883 

4 0.9998 0.9988 0.8053 

5 0.4450 0.4429 0.8668 
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Figure 3. Output data of heating system with estimated and real output  (simulation 4) 
 

Table 3. Experimental results with different numbers of centers, 2 inputs delayed, 2 outputs delayed using RBF-NN 
with a training method based on PSO. 

 
Number of 
simulation 

Nu Ny 
Number of 

centers 
2
estR  2

valR  

6 2 2 2 0.8976 0.8162 

7 2 2 3 0.9998 0.9996 

8 2 2 4 0.9998 0.9992 

9 2 2 5 0.9999 0.9996 

10 2 2 6 0.9998 0.9468 
 
 

Table 4. Gaussian centers of the best simulation (simulation 9). 
 

Cluster 
cj center of  

u(t-2) 
u(t-1) y(t-2) y(t-1) 

1 1.0000 0.9997 0.9716 0.9722 

2 0.4473 0.4449 0.8661 0.8519 

3 0.4448 0.4446 0.6159 0.6132 

4 09998 0.9987 0.8125 0.8187 

5 0.4446 0.4445 0.4882 0.4873 
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Figure 4. Output data of heating system with estimated and real output (simulation 9) 
 
5. CONCLUSIONS AND FUTURE RESEARCH 
 
 This paper presented a methodology including RBF-NN, the clustering algorithm c-means and optimization by 
PSO. The tested case study was a heating system which had a drive voltage as its input, and the temperature as output. 
For obtaining the results all the methods were described and put under context. 
 The preliminary presented results show that RBF-NN can be a powerful tool to predict temporal series and to study 
complex and nonlinear behavior. It’s possible to realize that the use of PSO in optimizing the centers generated by c-
means has considerably increased the results and the robustness of RBF-NN. 
 The c-means algorithm is sensitive to the earlier choices of the cluster, demanding a proper initialization to obtain 
correct results. Using an algorithm to make those choices can solve the problem, initializing with the centers close to the 
final centers, making sure that the number of iterations will be reduced. 
 Finally, the obtained results were considered satisfactory, showing that the present methodology can achieve the 
identification of the analyzed nonlinear system. The results could be observed on graphics and tables, where the 
multiple correlation coefficient was presented on estimation and validation phase. Therefore, the methodology proved 
that it can be applied to other type of systems, such as chaotic system or even multivariable systems. 
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