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Abstract. Most processes in industry are characterized by nonlinear and time-varying behavior. In this context, the
identification of mathematical models typically nonlinear systems is vital in many fields of engineering. A variety of
system identification techniques are applied to the modeling of processes dynamics. Recently, the identification of
nonlinear systems by artificial neural networks has been successfully applied. In this paper, an original approach
based on radial basis function neural network (RBF-NN) with a training method based on particle swarm optimization
(PSO) is proposed as an alternative solution. RBF-NN is considered as a good candidate for the prediction problems
due to its rapid learning capacity and, therefore, has been applied successfully to nonlinear time series modeling and
nonlinear identification. On the other hand, PSO was inspired by the choreography of a bird flock and can be seen as
a distributed behavior algorithm that performs multidimensional search. The RBF-NN model is trained and validated
based on the experimental data of a nonlinear process. Finally, simulation results from the performance analysis of
RBF-NN are presented and discussed.

Keywords: nonlinear identification, radial basis function neural networks, nonlinear processes, particle swarm
optimization.

1. INTRODUCTION

The mathematical description of dynamic systemsoisa simple task in which basic principles canubed. For
complex systems, modeling using basic laws to deter the dynamic behavior of a system is not alwayssible. An
interesting alternative to solve such problems wdg an approach for systems identification. A ndidesed in an
input-output system must be found, seeking a miaietween them (Coelho and Guerra, 2002).

In real life, most systems are nonlinear and tte afslinear models is limited, because they camaptesent the
system dynamics, such as its hysteresis, amplidetendency, bifurcations or chaos (lvankhnenko,1L9This
characteristics describes a nonlinear system andécessary the development of techniques thdehsuch behavior.
A particular area of nonlinear system identificatis the chaotic modeling. Several researches lampeoached
problem in classification, analysis, comprehensiod control chaotic systems (Alligoetial., 1996; lohet al., 2001).

Nonlinear systems identification is normally a wifiit task. When the system is dissipative, to dgvea model
through experimental data became a challenge diie tature. The use of neural networks to nonlingantification
problems has attracted some attention in recentsy@seural networks are originally inspired by bigit neural
networks’ functionality that may learn complex ftinoal relations through a limited number of traigidata. Neural
networks may serve as black-box models of nonlimealtivariable dynamic systems and may be traingdguinput-
output data, observed from the system (Mcloenal., 1998; Narendra and Parthasarathy, 1990). Thel ususal
network consists of multiple simple processing alats, called neurons, interconnections among thedrttee weights
attributed to the interconnections. The relevafdrimation of such methodology is stored in the w&sgHaykin, 2000;
Pei and He, 1999; Huang and Loh, 2001; Lian and 2000).

The main objective of this paper is to presentatmuzation approach for nonlinear identificatiosing radial basis
function neural network (RBF-NN) of heating systefihe RBF-NN uses the c-means clustering algoritang is
optimized by pseudo-inverse and particle swarmnaigétion (PSO).

The reminder of the paper is organized as folldwsection 2, the heating system process is pregeht section 3,
the one-step-ahead prediction for system identiicawith RBF-NN with a training method based onQP$
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discussed. The simulation results are presenteddtion 4. The conclusions and future works areudsed in section
5.

2. HEATING SYSTEM PROCESS

The identification case study evaluated in thisguap a nonlinear dynamic system of a heating m®cEhe system
is an experiment with single-input-single-outpuatieg system. The input drives a 300 Watt Halogeng, suspended
several inches above a thin steel plate. The oigputhermocouple measurement taken from the batie plate. The
sampling interval is 2 seconds and the number s is 801. Figures 1 and 2 illustrated the imgyivte voltage and
the output temperature in Celsius degrees of thg cstudy. The database used is cdlatSy: Database for the
| dentification of Systems (De Moor, 2009).
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Figure 2. Output temperature in Celsius degrees
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3. SYSTEM IDENTIFICATION AND RBF-NN WITH A TRAINING METHOD BASED ON PSO

The process identification is a procedure to idgrdan unknown model for forecast and/or understagdif the
dynamic behavior of the process. A model describakty in some way, and system identificationhis theory of how
mathematical models for dynamical systems are oactsd from observed data. Typically, a parameteriget of
models, a model structure, is hypothesized and idatiged to find the best model within this setoadimg to some
criterion. The choice of model structure is guidhgdorior knowledge or assumptions about the systhich generated
the data. When little prior knowledge is availalilés common to use a black-box model. A black-bogdel is a
standard flexible structure and it can be usegpaximate a large variety of different system®yrg, 1995). Neural
network models have proven to be successful naatiblack-box model structures in many applicatigtheng and
Chen, 2009; Huang and Du, 2008;etil., 2009; Pappalet al., 2009).

3.1. Fundamentals of RBF-NN

Neural networks consist of highly interconnectedgessing elements called neurons. Each neuron ehvasas
inputs and one output. The output of each neuralefisrmined as a nonlinear function of weighted sdirthe inputs,
however more complex mathematical operations cbeldncluded. The neurons are interconnected threvgjghts,
which are adjusted during the period of training.

Among the excellent characteristics of the neuedlvorks there are: parallel processing, learniisgpeiative and
distributed memory. These characteristics are iadpin the biological neural networks (Bortman adddjem, 2009).
Accordingly, RBF-NN is widely used in identificatioof nonlinear systems. The key problems of RBF-&i the
following: determining centers and widths of radissic function, the number of hidden nodes, wsididgtween
hidden layer and output layer and the parametelsdolfien layer are optimized locally, not globalghenet al., 2007;
Hong and Chen, 2009).

There are several representations for nonlinedesysodeling. In this application we have choser-RBN. RN-
RBF design can be seen as a curve adjustment prdbl@ction approximation problem) in a high dimiemsl space.
The radial basis function (or activation functiamged in RBF-NN is Gaussian type as illustrated in @). The
estimated output is shown in Eq. (2) (Cleeal., 2007; Huang and Wang, 2007).

um:éh?) (1)

wherex; is the input vector; is the activation function center (Gaussian) grid the standard deviation.
N n
y(t) = _lemkm, 2)
1=

wherem is the number of clusters (neuronsy), is the weights anll, is the hidden layer output.

The clustering method used in this applicationtbg RBF-NN for classification problems is fuzzymeans
algorithm (FCM), which was developed by (Dunn, 1paB8d improved by (Bezdek, 1981). This algorithnréguently
used for standards recognition and is based ommgriof the objective function given by Eq (3):

i=1 j=1 ,15 m< oo (3)

where U is the degree of the seq in the groupj , X is the element of the measured dat&:,j is the center of the
group ], the parameteim is a weight that determines the degree to whiatigianembers of a cluster affect the
clustering result amﬂ.“ is the norm between measured data and the cdrterupdate oi,lij and C is given by Eq.
(4):

1

me-qWT;

1% =cIF

H (x) =

(4)
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3.2. Particle Swarm Optimization Algorithm

The PSO is responsible for optimizing the Gaussfaeads. It's has a population with random pasijeach of
these particles has a velocity, and the partidligs around the search space. The particles stoeg best position in
their memory best) and also the fitness in this point (Chetral., 2007; Huang and Wang, 2007).

The bestpbest of all swarm is denominated as the best globaltipas(gbest) (Gudise and Venayagamoorthy,
2003). The basic concept of PSO is to acceleratecies towardpbest andgbest, weighted by an acceleration factor at
each time step. Mathematically, a particle folldhsse equations:

Vit =Wl +c) Dand; [ﬁp,d - XY )+ ¢, [fand, [ﬁpgd - xitd) (6)
t+1 _ ot t+1
Xig® = Xjg +Vig Dt ()

where at =1, t represents the actual iteration @md represents the next iteratidfy and X 4 represents the particles
velocity and positionrand; andrand, are random numbers between [0,1], used to maiti@rpopulation diversity.
Equation (6) is used to update each particle’sdpfee it calculation the speed in last iterationyltiplied by an inertial
weight (Linet al, 2006).

The second factor is composed by a cognition plagt,basis is the difference between the actuatipowof the
particle and the best position it has achievedisiohy (pbest). The last factor is composed by a social compriba
calculus basis is the particle actual position #relbest position achieved by any particle in tlgpréthm execution
(gbest).

Equation (7) represents the update position ddirtigle, according with its previous position atgl actual speed,
consideringyt =1. One of the main reasons for the PSO attractiveizethe need to adjust few parameters (Kiel.,
2002).

Constantg; andc, are positive constants denominated cognition asthscomponents, respectively. These are the
acceleration constants, varying the speed of thiicfeatowardpbest andgbest, according to past experience. Constants
¢, andc;, are not critical factors to algorithm convergendewever, a fine tuning of such values may causaster
convergence. Values of andc, are assumed as 2.0, according to Gaing (1994)rd8ent researches inform that the
choice may be even better if the cognition paramistéigher than a social parameter, inside thetdirg +c, < 4

(Parsopoulos and Vrahatis, 2002).

The use oW, called inertial weight is proposed by Shi and fBbet (1998). This parameter is responsible for a
dynamic adjustment of the particle speed, so,ré&ponsible for balancing the research performedhbyalgorithm
between a local and a global one, making possibtee algorithm converge in a smaller number aifens. A higher
value of inertial weight makes possible a globalrsk, on the other side, a small value takes tiperihm into a local
search.

Through a dynamical adjustment of the inertial ghei it's possible to dynamically adjust the seacelpability.
Once the PSO search process is nonlinear and ceoniipie hard, if not impossible, to mathematicaitydel the search
capability to dynamically adjust the inertial weigho, a fixed or a linearly decaying inertial watignay be adopted.
Other alternatives for dynamical adjustmeniare the adoption of co-evolution, meta-optimizatid fuzzy systems
(Xiao and Wang, 2006; Zhat al., 2009).

Application of a high value of inertial weight #ie start and decaying until a small value throtigh PSO
execution causes the algorithm to own global seelnelnacteristics at the start and local searchachenistics in the end
of the execution. The value ¥ decaying from a maximum value of 0.9 towards aimim value of 0.4 through the
execution is a good call. When adopting linearlgadéng inertial weights, normally Eq. (8) is adahtéor W update,
whereitermax is the maximum number of iterations atet is the actual iteration (Shi and Eberhart, 2002).

W =W ax _Wmax ~Whin « iter
itermax ®)
The linear optimization method to make linear paters of RBF-NN, in this application, is the psgimiverse.
The update of each weight for training RBF-NN udinig derivation of least mean squares is realizegq. (9),
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w, = ((ka)‘lkT )y(t), )

wherey(t) is the desired output.
The performance criteria evaluated for the dynasggtem to be identified is the multiple correlaticoefficient,

R?, between real outpy(t) and the estimated outpg(t) , is realized by Eq. (10),

290 - 5 1)
R% =1- 'Zln , (10)
L0~ v)?

wheren is the number of measured samples of the procgpsito
When the value of? is equal to 1.0, indicates an exact fit of the eidd the process’ measured data. The value of
R? between 0.9 and 1.0 is considered enough foriped@pplications, in control systems (Schailal., 1997).

4. RESULTS

In Table 1, the Heating system identification tesusing a radial basis function neural networkgg-means for
clustering and optimized by pseudo-inverse and R8D concepts of one-step-ahead prediction areepted. In the
estimation phase (training of RBF-NN) were used g@®ples, and in the validation phase were useddgiples.

For the results, were performed 10 simulation& different numbers of delayed inputdu, delayed outputd\ly)
and centers. Table 1 contains 5 simulations usiimgqual to 2Ny equal to 1 and the number of centers was simulated
with 2, 3, 4, 5 and 6. The Table 1 contains 5 satiohs usingNu equal to 2Ny equal to 1 and the number of centers
was simulated with 2, 3, 4, 5 and 6. The Tables® a@ontains 5 simulations, but changing Meto 2. The results

obtained for these simulations are ﬂﬁég and R\?aj (estimation and validation phases).

On the Table 1, the best result was found in satierh 4, and the Fig. 3 illustrated the real antihesged output
graphic of the heating system. And on the Tabl#h@ best result was found in simulation 9, andRiae 4 illustrated
the real and estimated output graphic. Every sitimrlawas included at least one delayed output & RBF-NN,
therefore improving the results. The reason fos thiprovement is that the RBF-NN obtains more imfation about
the nonlinear dynamic, improving one-step-aheadtifieation. But special care must be taken, beeawbken the
number ofNu andNy increases, the complexity of the model increases t

Table 1. Experimental results with different nunsbef centers, 2 inputs delayed, 1 output delay@yuRBF-NN with
a training method based on PSO.

simuation " || "comers | P | Rl
1 2|1 2 0.8599 0.7106
2 2|1 3 0.9999 0.9997
3 2|1 4 0.9999 0.9998
4 2|1 5 0.9999 0.99943
5 2|1 6 0.9999 0.9997

Table 2. Gaussian centers of the best simulatiomu(ation 4).

Cluster que({“ze)r off ut1) | ye-1)
1 1.0000 | 0.9997 0.970

0.4439 0.4436 0.616
0.4441 0.444Q 0.488
0.9998 0.9988 0.805
0.4450 0.4429 0.866

Ol lWIN
O W W o1 J
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Figure 3. Output data of heating system with edtithand real output (simulation 4)

Table 3. Experimental results with different nunsbef centers, 2 inputs delayed, 2 outputs delagetyuRBF-NN
with a training method based on PSO.

simuation| || "convers | e | Rl
6 2| 2 2 0.8976 0.8162
7 2| 2 3 0.9998 0.9996
8 2| 2 4 0.9998 0.9992
9 2| 2 5 0.9999 0.9996
10 2] 2 6 0.9998 0.9468

Table 4. Gaussian centers of the best simulatiomu(ation 9).

Cluster| ‘;‘?{“Ze)r ofl  ye-1) y(t-2) y(t-1)
1 10000 | 09997 | 09716]  0.9722
2 0.4473 | 04449 | 08661 08519
3 0.4448 | 04446 | 06159 06137
4 09998 | 09987 | 08125| 08187
5 0.4446 | 04445 | 04882| 04873
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Figure 4. Output data of heating system with esthand real output (simulation 9)
5. CONCLUSIONS AND FUTURE RESEARCH

This paper presented a methodology including RBE-MM¥ clustering algorithne-means and optimization by
PSO. The tested case study was a heating systech Wad a drive voltage as its input, and the teatpeg as output.
For obtaining the results all the methods were rilesd and put under context.

The preliminary presented results show that RBFddN be a powerful tool to predict temporal sesied to study
complex and nonlinear behavior. It's possible talize that the use of PSO in optimizing the centgnserated by-
means has considerably increased the results and thestobss of RBF-NN.

The c-means algorithm is sensitive to the earlier choices & thuster, demanding a proper initialization toadrt
correct results. Using an algorithm to make thds®aes can solve the problem, initializing with trenters close to the
final centers, making sure that the number of itens will be reduced.

Finally, the obtained results were consideredsfatiory, showing that the present methodology aarieve the
identification of the analyzed nonlinear systemeTiesults could be observed on graphics and tablbsre the
multiple correlation coefficient was presented stireation and validation phase. Therefore, the oedlogy proved
that it can be applied to other type of systemshss chaotic system or even multivariable systems.
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