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Abstract. This work presents a methodology for the modeling of flexible slender beamlike structures, with application 
the submarine risers used for oil extraction. Due to the typically large aspect ratio, the behavior of these structures can 
be better represented in the context of large-displacement nonlinear theories, among which Cosserat beam theory has 
been chosen in the study reported herein. In this theory, the configuration of the deformed beam is described through 
the vector displacement of the centroid curve, and an orthonormal moving frame, rigidly attached to the cross-section 
of the beam. The orientation of the moving frame, relative to the inertial one, is parameterized using three consecutive 
elementary rotations. To main advantage of this theory it is in the fact that the form functions are obtained by static 
equilibrium equations and, as a result, geometric nonlinearities of the system are fully taken into account. To account 
for the excitations exerted by the surrounding fluid, a one-way approach is adopted in which the hydrodynamic forces 
are provided by semi-empirical expressions.  The theoretical foundations are fist reviewed, followed by numerical 
simulations that put in evidence the main features of the modeling methodology.  
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1. INTRODUCTION  
  

In the context of the offshore industry, flexible risers are shallow structural components designed with the purpose 
of transporting the pressured oil from the well to the platform. Their design involves technological challenges as they 
are becoming increasingly longer as the result of deeper oil exploitation. Also, during their operation they are subjected 
to very complex scenarios resulting from the combination of static and dynamic loads such as: internal pressure, self-
weight, residual stress resulting from the installation procedure and vibrations induced by water motion (vortex-induced 
vibrations-VIV) and the vertical motion of the platform. Thus, the safe and cost-effective design of such structures 
requires a deep understanding of their mechanical behavior, which can be gained by the use of numerical models 
capable of accounting for the actual geometry and load conditions, especially fluid-structure interaction. 

 Pesce (1997) discusses the behavior of long risers, stating that it can be better represented by the theory of flexible 
lines than the classical beam theory, owing to their slender profile. In this context, the author refers to the Cosserat 
beam theory. This nonlinear theory was developed in the XVIIth century by the Cosserat brothers, and has been 
revisited and applied to engineering problems in the last few years, as the increase of computer power enables dealing 
with highly nonlinear differential equations.  

As opposed to traditional Euler-Bernoulli or Timoshenko beam theories, the Cosserat beam theory geometrically 
exact, in the sense that it is not based on geometric approximations. In this theory, the deformed configuration of the 
beam is described by the displacement vector of the centroid curve and an orthonormal moving frame, rigidly attached 
to the cross section of the beam. The orientation of the orthonormal moving frame, with respect to an inertial system, is 
parameterized using three consecutive elementary rotations. Thus, the equations of motion are nonlinear differential 
equations in terms of time and space variables. For static problems, the equilibrium equations become nonlinear 
ordinary differential equations in terms of a space variable, which can be approximately solved by using standard 
techniques as the perturbation.  

Aiming at solving the nonlinear equations of motion, Simo (1985) and Vu-Quoc (1986) combined the finite element 
theory to the formulation. In this condition, the displacement functions of the beam are obtained as a function of the 
nodal displacements and rotations. The main advantage of this procedure is related to the fact that the shape functions 
are obtained from differential equations of motion, and therefore take into account all the nonlinearities of the system. 
Consequently, one can ensure satisfactory accuracy of response predictions by dividing the structure in a number of 
elements which is significantly smaller than the number required by finite element discretization based on low order 
polynomial shape functions.  

Recent publications like Alamo (2006) used that methodology, from the second order shape function, to model 
slender structures, with applications in oil drilling columns. And Santos (2007) uses the methodology, but instead uses 
adopted shape functions, low order polynomial to modeling submerged cables from an initial configuration of 
equilibrium and excited by the movement of the platform and by the flow of sea water obtained empirically using the 
Morison’s equations. 
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In this paper the main characteristics of the Cosserat theory are first reviewed. The numerical implementation of the 
modeling theory is validated and assessed through comparison with the data obtained from the literature. Finally, a 
cylinder that resembles a real flexible riser used in oil industry is modeled, aiming at characterizing the motion under 
the action of surrounding flow. In this first simulation, the forces applied by the fluid are obtained from empirical 
Morison equations of for submerged cables. This procedure will be used to provide support for future implementations, 
in which the fluid will be modeled using full 3D computational fluid dynamics. 

 
2. THEORETICAL FRAMEWORK 
  

According to the Cosserat theory, the behavior of a slender beam is modeled in terms of the motion in space by the 
line passing through the centroids of the cross sections, defined by the vector r(s) in a Cartesian fixed (inertial) base {e1, 
e2, e3} and a set of orthogonal unit vectors attached to the cross section {d1(s), d2(s), d3(s)}. In Figure 1 it can be seen 
that d1(s) and d2(s) are contained in the cross section plane whilst d3(s) is perpendicular to that plane. In summary, the 
elementary configuration in the beam theory of Cosserat is described by a line of centroids r(s) and three orthogonal 
unit vectors. 

 

 
 

Figure 1. Schematic model of an element of Cosserat. 
 
The beam theory of Cosserat classifies the strain into two groups: linear strain v(s) and angular strain u(s). The 

components v1(s) and v2(s) are called shear strain and v3(s) is named elongation. While u1(s) and u2(s) are described as 
bending strain, u3(s) is called the torsion strain. 

The linear strain vector v(s) is obtained by the derivation of the position of the centroidal point along the coordinate 
s, as given by Eq. (1). 
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The angular strain vector u(s) is obtained from the derivative in the space of the mobile base di(s), according to Eq. 

(2). 
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To describe the relationship between the orthonormal moving frame and the fixed base two methods of 

parameterization can be employed: the Euler vector or three elementary rotations (Euler’s angles). The transformation 
matrices found for the Euler’s vector method and the Euler’s angles method are presented in the Eq. (3) and Eq. (4), 
respectively. 
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Note that the angle ϕ measures the torsion of the beam along the coordinate s, and φx, φy, φz are respectively the 

rotations around the axes x, y and z. 
Introducing polynomial expansions of the trigonometric functions appearing in Eq. (4) and matching the resulting 

expressions to those of Eq. (3), algebraic equations are obtained, which can be mathematically manipulated and 
truncated up to the third order to obtain the relationships between )}(),(),({ sysxs ′′ϕ  and )}(),(),({ sss zyx φφφ as 
given in Eq. (5) and (6): 
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The local dynamic behavior of a beam element of Cosserat, as shown by Antman (1995), is given by partial 

differential equations given in Eq. (7), where ),( tsS n  is the contact force, ),( tsS m  is the resulting contact moment, 

),( tsS h  is the angular momentum, ),( tsS f  is the external density force and ),( tsS l   is the external momentum 
density. 
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The displacement functions of the beam, expressed in terms of the nodal displacements and rotations are derived 

from the resolution of the static equilibrium equations. However, for static equilibrium, the equations of motion become 
ordinary differential equations, in the absence of external forces and gravity. After mathematical manipulations, the 
following equations are obtained:  
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In Eq. (8) the term n(s,t)  represents the contact force per unit length, m(s,t)  is the contact moment (internal) 

resultant per unit length, h(s,t)  is the angular momentum per unit length, f(s,t)  is the external force density per unit 
length and l(s,t)  is the external momentum density per unit length. 

To find the shape functions it is necessary to solve the highly nonlinear system above, noting that it cannot be solved 
by direct integration. Therefore, the perturbation method is used to obtain the approximated solution (Nayfeh, 1985). 
The resolution of this system was performed using symbolic manipulation software. For details the reader should 
consult the paper by Cao (2005). To investigate deflection up to third order nonlinearity in the perturbation parameter ε, 
it is adequate to adopt the following truncated Eq.(9) to ε3 order terms. Then, the general displacement components of 
the beam in the domain s = [0, L] are given by: 
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The dynamic equations of motion are obtained by using the extended Hamilton Principle, which is given by Eq. (10) 

where, T is the total kinetic energy of the system, V is the potential energy associated with the conservative forces and 
F
NCWδ  is the virtual work of the non conservative forces.   
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Therefore it is necessary to derive the expressions of the kinetic and potential energies of the Cosserat beam. In Fig. 

1 it is possible to see that the motion of the beam involves two velocities, one is the translation of the centroid curve and 
the other is the angular velocity of the cross section. The kinetic energy per unit length is given by Eq. (11), where M(s) 
is the mass matrix, depending on the s position of the centroid line, I(s) is the matrix of inertia, depending on the s 
position of the centroid line and ),( tsS w  is the angular velocity of the cross section. 
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On other hand, considering small strains, the elastic potential energy, per unit length, can be expressed in terms of 

the strain vectors ),( tsv  and ),( tsu , as given by Eq. (12): 
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Since K(s) and J(s) are given by constitutive relations that will not be shown in this paper for convenience, for more 

information the interested reader is advised to refer to (Cao, 2005). It is convenient to rewrite the energy expressions as 
function of the dimensionless variables defined by Eq. (13), where 0ω  is the natural frequency, to be determined later, 
L0 is the size of the element. 
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The nodal displacement and the rotation can be expressed as a vector in function of a previously picked set of 

generic coordinates assuming that the dimensionless variation of displacement in the edges of the element ( 0/ La=σ  

and 0/ Lb=σ ) is given by Eq. (14). 
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And Eq. (15) 
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So, the generic vector of displacement for the element can be described by Eq. (16). 
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The generic degrees of freedom represented by the Eq. (14) and Eq. (15) can be seen in Figure 2, where a and b are 

the nodes in the edge of the element. 
 

 
Figure 2. Cosserat beam element. 

 
Rearranging Eq. (11) and making the necessary mathematical manipulations, it is possible to find the relationship 

given by Eq. (17), that refers to the kinetic energy of the beam, and using a similar manner it is possible to find the 
potential energy of the beam, given by Eq. (18). 
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The temporal variations of displacements and rotations of a cross section inside the element can be expressed as 

combinations of the shape functions previously obtained, leading to a nonlinear functions of the dimensionless space 
variableσ  and of the nodal displacement vector )(τeq , as follows: 
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or: 
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Making the necessary mathematical manipulations, the kinetic energy density and the potential energy density are 

given as follows: 
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That way it is possible to define the Lagrangian given by Eq. (22): 
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The virtual work done by the non conservative forces, whose resultant is denoted by NCF  is expressed as:  
 
2 2 2

( )
1 11 1 1

t t tN NF ncW dt F r dt Q q dtnc i i j jj jt t t
δ δ δ= ⋅ =∑ ∑∫ ∫ ∫

= =
          (23) 

 
where Q j are the generalized forces. 

It is assumed that the forces that act on the element are composed of three additive parts. The first is from the 
interaction between neighboring elements, the second is due to the action of external forces concentrated in nodal 
points, and  the third represents the external forces distributed with fixed directions and prescribed intensity. Therefore, 
the interaction of neighboring elements, in this work will be called internal forces and moments. The internal forces in 
the nodes at the edge of the element a (σ=0) and b (σ=L) are given by Eq. (24). 
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The moments of internal interaction are given by:  
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The concentrated forces and moments are expressed as follows: 
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Finally, the distributed forces ( )iξ  and the distributed moments ( )iη  are given by Eq. (27): 
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The virtual work don by a distributed load (Cao, 2005) is given by: 
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Rearranging the internal forces and internal moments in elementary terms, one writes: 
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The elementary external forces and moments are similarly given by: 
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Therefore, the virtual work done by the additive forces is expressed as follows: 
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Associating Eq. (22), Eq. (24) and Eq. (10), and using the chain rule and integration by parts, we have the Lagrange 

equation for the motion of a Cosserat element given by Eq. (33). 
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After several mathematical manipulations, we find the ordinary differential equation of motion with nonlinearities of 

the same order of the displacement functions (third order), represented by  Eq. (34), where e
1M and e

2M  are the mass 

matrices (both linear), eK  is the linear stiffness matrix and )( ee qg  is a nonlinear vector with quadratic an cubic terms 

on the components of eq . Then, )(τief  is the elementary internal force and momentum vector, )(τcef  is the 

elementary external concentrated force and moment vector and ),( ede qf τ  is the elementary distributed moment 
vector. The contour conditions, as well as the global equations of the systems are mounted using they are mounted the 
similar form the classic theory of finite elements. For more details of this implementation and the construction of global 
matrix of the system, see Cao (2005). 
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For transient analysis of nonlinear structural problems it is necessary to use a stable and accurate method of time 

integration, especially when the solution is to be simulated in long time periods. Methods that prove to be stable in 
linear analysis could be the first choice for applications to nonlinear problems, but it has been verified that these 
methods do not remain stable when large displacements are involved and long periods of response simulations. This 
fact is directly linked to the inability of traditional methods to preserve the total energy and momentum of the system, 
which makes them numerically unstable (Bathe, 2007). The so-named composed method of time integration may be a 
viable alternative when the traditional methods such as Newmark’s method become unsuitable. 

The feature of stability over the integration time is crucial in fluid-structure simulations, as the simulation time is 
relatively long, especially when CFD methods are used to simulate the flow. Thus, to avoid this problem, we chose to 
implement the Bathe’s composed method to integrate the global equations of the system, which were obtained from the 
elementary equations of the system using the Eq. (34); this method will be used in future fluid-structural 
implementations. 
 

3. NUMERICAL APPLICATIONS 
 
3.1. Modeling of a slender cantilever beam 

 
First, to validate the implemented algorithm, we will simulate a structure found in the literature, and this 

confrontation will enable to evaluate the modeling methodology and the integration method used. The Figure 3 
represents the simulated structure. 
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Figure 3. Model used to validate the methodology 

 
This beamlike structure was first studied by Cao (2005), having a length of 0.3 meters and a rectangular cross 

section of constant width of 0.01 m and 0.005 m of thickness. The values adopted for the Young modulus and mass 
density are respectively 2.08e8 Pa and 3.0e3 kg/m³. The harmonic excitation forces in x and y directions are 
respectively )8cos(01.0)( ttf c

x =  and )8sin(005.0)( ttf c
y = . Figure 4 shows a comparison between the displacement time 

histories at the free end of the beam, which was discretized using 10 finite elements of equal lengths. 
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(a) (b) 

Figure 4. Confrontation of the implemented methodology 
(a): displacements in x direction; (b): displacements in y direction. 

 
In order to test the mesh convergence of the discretization, the structure has been modeled using different numbers 

of elements ne, all with the same size. Figure 5 shows the displacement at the free extremity of the beam, obtained by 
using 1, 2, 3 and 10 elements. 
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(a) (b) 

Figure 5. Displacement in the x and y directions of the edge of the element using different numbers of elements. 
 

It can be noticed that the difference between the responses obtained with the models using 2 and 10 elements is 
negligible. Thus the structure can be modeled using only 2 elements and 12 degrees-of-freedom without any decrease in 
accuracy. When the structure is modeled with a minimum number of elements, it may be necessary to use the shape 
functions to reconstruct the displacement fields inside the elements, as combinations of the nodal displacements and 
rotations. The accuracy of such procedure was evaluated by discretizing the beam with 2 and 10 elements and 
comparing the displacement responses at the point s=0.24 m,  which coincides with a node of the 10-element model but 
does not so coincide with a node of the 2-element model. In Figure 6, the displacement responses are compared, 
showing that they are very close to each other. This fact confirms that, making the choice for discretization with few 
elements, the accuracy of the responses is maintained for any point along the beam length.   
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Figure 6. Displacement inside the element using different number of elements 
(a): displacements in x direction; (b): displacements in y direction. 

 
3.2 Modeling of a riser 

 
This section will present the results obtained from the dynamic analysis of a structure whose geometry is close to 

that a real riser used in the oil industry. This is a preliminary step towards the modeling of VIV accounting for fluid-
structure interaction, using tridimensional CFD methods. Revolute joints are adopted in displacements both the 
extremities and the torsional degrees-of-freedom were eliminated, allowing rotation in the directions x and y, as shown 
in Figure 7. The structural properties are given in Table 1.  

It is important to note that to obtain larger displacements (and geometrically nonlinear, consequently) we used an 
elasticity modulus lower than that used in real risers. This procedure aims to test the stability of the numerical 
integration method, as it is known that the more pronounced the nonlinear behavior, the greater the difficulty of 
convergence. 

In these first tests, the structure is assumed to be excited by non-conservative, time-dependent hydrodynamic forces 
which are modeled by the semi-empirical Morison equations, using normal and transverse drag coefficients obtained 
from the literature (Santos, 2007). According to these equations, the normal and tangential drag forces are given, 
respectively, by:  

 

rnrnanrfan CD vvf ρ
2
1

=             (35) 

 

rtrtatrfat CD vvf ρ
2
1

=            (36) 

 
where vr is the relative velocity of the fluid, given by the expression vr =vf - vc, where vf is the velocity of the fluid and 
vc is the velocity of the cylinder. Hence, vrn and vrt are, respectively, the normal and the transversal component of vr; ρf  
is the density of the fluid and Dr is the diameter of the cable. 

 

 
 

Figure 7. Layout of the structural model simulated. 
 

Table 1. Properties of the modeled structure. 

Properties Young’s 
Module 

Poisson 
Ration 

Internal 
Radius (Ri) 

External 
Radius (Re) 

Cross 
Sectional 

Area 
Cat Can Vf Density 

Values 2.08e8 
N/m² 0.3 0.1800 m 0.2000 m 0.0239 m² 0.05 0.6 0.8 

m/s 
3.0e3 
Kg/m³ 
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Note that despite the structural model is represented by a line (2D), the methodology includes the tri-dimension 
modeling, and in this simulation to simplify the model, was chosen an excitement on just one direction. Figure 8 shows 
the displacement obtained at the time t = 10.66 seconds and the temporal response obtained at the node 6 and direction 
y. 
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Figure 8. Lateral displacement field and temporal response of the beam. 
 

5. CONCLUSIONS 
 

In this paper, the Cosserat beam theory has been implemented and from, upon comparison with the data found in 
literature, it was possible to assess and validate the implementation. This stage of validation was essential to evaluate 
the capability of the methodology, especially for the modeling of slender structures, such as risers used in the offshore 
industry. The numerical results demonstrate the possibility of characterizing accurately the nonlinear behavior with a 
reduced number of degrees-of-freedom. Clearly, the complexity of the formulation requires cumbersome algebraic 
manipulations, which must be tackled with the use of symbolic computations. Preliminary simulations were devoted to 
the characterization of VIV in offshore risers of large aspect rations, which is a very relevant industrial problem. Studies 
are being carried-out by the authors aiming at developing a numerical methodology for tridimensional fluid-structure 
interaction simulations based on the coupling of the structural model described in this paper with computational fluid 
dynamic procedures.  
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