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Abstract. This work deals with the solution of the heat and mass transfer problem during drying of capillary porous 

media. The physical problem considered is described by the linear Luikov’s equations in cylindrical coordinates. The 

two-dimensional problem is solved with the Generalized Integral Transform Technique (GITT). A comparison of the 2D 

solution with the two approximate solutions considered in this work will establish their ranges of validity in terms of the 

radial Biot number, for different values of Lu, Pn, Ko, Biq, Bim and ε. The Generalized Integral Transform Technique 

is a powerful hybrid numerical-analytical approach, which has been used for the solution of different heat transfer 

problems. In such an approach, the original partial differential equation governing the physical problem is transformed 

in at least one of its spatial independent variables.  
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1. INTRODUCTION 

 
The present paper illustrates, through examples on drying in capillary porous media, the hybrid tools that have been 

developed along the last few years aimed at enhancing the simulation process in thermal sciences and engineering. 
Following the physical model construction, hybrid tools for development of the mathematical model and of the solution 
methodology are investigated. The hybrid nature is explored by making use of  lumped-differential formulations, 
numerical-analytical methods, and symbolic-numerical computations.  

The phenomena of heat and mass transfer in capillary porous media has practical applications in several different 
areas including, among others, drying and the study of moisture migration in soils and construction materials 
(Luikov,1975; Luikov, 1980). For the mathematical modeling of such phenomena, Luikov (1975, 1980) has proposed 
his widely known formulation, based on a system of coupled partial differential equations, which takes into account the 
effects of the temperature gradient on the moisture migration. A few approaches of analytical nature have been used for 
the solution of Luikov’s equations in one-dimensional and multi-dimensional problems (Ribeiro and Cotta, 1993; 
Ribeiro and Cotta, 1995; Guigon et al., 1999; Thum et al.,2001; Lobo et al., 1987; Mikhailov and Özisik, 1994). 
Nevertheless, several multidimensional heat transfer problems might involve small gradients along a specific spatial 
direction or even inside the whole body.  

A common engineering approach in such cases is to integrate the governing equations in the directions with smaller 
gradients. Afterwards, the well-established Generalized Integral Transform Technique (GITT) is employed, as a hybrid 
numerical-analytical solution methodology for diffusion and convection-diffusion problems (Cotta, 1990; Cotta, 1993; 
Cotta, 1994; Cotta, 1998; Cotta and Orlande, 2003; Cotta and Mikhailov, 2004; Cotta et al., 2004; Cotta et al., 2005). 
The relative merits of such approach over purely numerical procedures, in light of its hybrid nature, are also discussed, 
such as the automatic global accuracy control feature and the mild increase on computational costs for multidimensional 
nonlinear situations. The use of the Generalized Integral Transform Technique in drying problems with simple 
eigenvalue problems involving analytical eigenfunctions, can avoid the calculation of complex eigenvalues for this class 
of heat and mass transfer problem based on Luikov’s formulation.  

Thus, for the sake of illustration, in this paper we examine the solution of a two-dimensional drying problem in 
cylindrical coordinates. The coupled heat and mass transfer in the capillary-porous body is formulated with Luikov’s 
equations. Temperature and moisture content gradients along the radial direction are supposed small, so that the 
governing equations are integrated in this direction. Both the lumped and the CIEA approximations are considered in 
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this work to approximate the dependent variables at the surface of the cylinder. The resulting two-dimensional problem 
is solved with the Generalized Integral Transform Technique (GITT).  

Despite all the progress achieved in the computational solution of drying problems formulated by the original set of 
Luikov's equations, these methodologies are still quite too complex for engineering-type work in the realm of 
applications.  In particular due to the multidisciplinary aspects of this physical problem, appearing within various 
sciences branches where a profound mathematical background might not be a priori required, the development of 
simplified formulations becomes of major relevance. One such possibility of simplification is the classical lumped 
system analysis, based on the assumption of uniform distribution of the associated potentials over the whole problem 
domain or along selected coordinates. The alternative technique of producing approximate formulations described in 
this section, based on the use of Hermite-type approximations for integrals, was examined. Therefore, the present 
example is aimed at illustrating improved lumped- differential formulations developed in the context of drying problems 
Cotta and Mikhailov, 1997; Cheroto et al., 1997, Dantas et al., 2000, Dantas et al., 2007), starting from the Luikov 
system of partial differential equations (Luikov, 1975; Luikov, 1980). The integral transform solution of the original 
Luikov system provides the reference results (Ribeiro and Cotta, 1993; Ribeiro and Cotta, 1995; Guigon et al., 1999; 
Thum et al., 2001; Lobo et al., 1987) to illustrate the accuracy and applicability limits of the approximate formulations. 
 

2. PHYSICAL PROBLEM AND MATHEMATICAL FORMULATION 

 
The physical problem under picture involves a cylindrical capillary porous medium of radius R0 and length l, initially 

at uniform temperature and uniform moisture content. One of the boundaries, which is impervious to moisture transfer, 
is in contact with a heater. The other boundary is in contact with the dry surrounding air, thus resulting in a convective 
boundary condition for both the temperature and the moisture content. The lateral surface of the cylinder is also 
supposed to be impervious to mass transfer, but heat losses at this boundary are taken into account through a convective 
boundary condition.  The linear system of equations proposed by Luikov (1966), for the modeling of such physical 
problem involving the drying of a capillary porous media, can be written in dimensionless form as (Luikov, 1966, 
Mikhailov and Özisik, 1994, Cotta, 1993, Ribeiro, 1993 and Cotta, Ribeiro and Lobo, 1998, Dantas et al.., 2007 Younsi 
et al., 2006):   
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  in 0<R<1 and 0<Z<1, for τ>0 (1.a,b) 
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The various dimensionless groups appearing above are defined as 
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where a is the thermal diffusivity of the porous medium, am is the moisture diffusivity in the porous medium, c is the 
specific heat of porous medium, h and hr are the heat transfer coefficients at the top and lateral surfaces, respectively, hm 
is the mass transfer coefficient, k is the thermal conductivity, km is the moisture conductivity, l is the thickness of porous 
medium, q is the prescribed heat flux, λ is the latent heat of evaporation of water, Ts is the temperature of the 
surrounding air, To is the uniform initial temperature in the medium, us is the moisture content of the surrounding air, uo 
is the uniform initial moisture content in the medium, δ is the thermogradient coefficient and ε is the phase conversion 
factor. Lu, Pn and Ko denote the Luikov, Posnov and Kossovitch numbers, respectively. 
 

3. HYBRID METHODS: THE GENERALIZED INTEGRAL TRANSFORM TECHNIQUE (GITT) 

 
Within the last two decades, the classical integral transform method (Mikhailov and Özisik, 1994) gained a hybrid 

numerical-analytical structure, offering user controlled accuracy and quite efficient computational performance for a 
wide variety of a priori non transformable problems (Cotta, 1990; Cotta, 1993; Cotta, 1994; Cotta, 1998; Cotta and 
Orlande, 2003; Cotta and Mikhailov, 2004; Cotta et al., 2004; Cotta et al., 2005), including the nonlinear formulations 
of interest in heat and fluid flow applications. Besides being an alternative computational method on itself, this hybrid 
approach is particularly well suited for benchmarking purposes, in light of its automatic error control feature, retaining 
the same characteristics of a purely analytical solution.  In addition to the straightforward error control and estimation, 
an outstanding aspect of this method is the direct extension to multidimensional situations, with a moderate increase in 
computational effort with respect to one-dimensional applications.  Again, the hybrid nature is responsible for this 
behavior, since the analytical part in the solution procedure is employed over all but one independent variable, and the 
numerical task is always reduced to the integration of an ordinary differential system in this one single independent 
variable.  

The application under study here involves simultaneous heat and mass transfer during drying of a capillary porous 
body under the Luikov model, according to the one-dimensional problem formulation that results from the CIEA 
reformulation previously developed. 

We use in this work the GITT for the solution of the one-dimensional problem (1), following the approach advanced 
in (Ribeiro et al., 1993; Ribeiro and Cotta, 1995). In order to reduce the effects of the non-homogeneties on the 
convergence of the series solution, we filter problem (1) by writing its solution as 

 
θ (R,Z,τ) = θs(Z) + θh(R,Z,τ) φ (R,Z,τ) = φs(Z) + φh(R,Z,τ)  (3.a,b)  
 
where the filtering solutions are obtained from the following steady-state problem 
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By substituting equations (3.a,b) into equations (1) and using equations (4), we obtain the filetered problem as: 
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The following eigenvalue problems are used in order to define the integral transform/inverse formula pairs for 

temperature: 
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Similarly, the following eigenvalue problems are used for the moisture content: 
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 The integral transform / inverse formula pairs for temperature and moisture content are defined, respectively, as 
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The integral transformation of problem (6) results on the following system of coupled ordinary differential 
equations: 
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The solution for the system (17), truncated to a sufficiently large order to reach convergence, is obtained with the 

subroutine DIVPAG of the IMSL (1987). Then, the temperature and moisture content along the axial and radial 
direction can be computed by using the inverse formula given by Eqs. (15a), (16a). 

 
4. RESULTS AND DISCUSSION 
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We examine below the effects of the Biot number in the radial direction on the approximate solutions obtained via 

lumped and H1,1/H0,0 (Dantas et al., 2007) approaches and two dimensional solution via GITT. Figures 1.to 3 show the 
results for Biqr = 0, 1.0 and 10, as well as the results obtained with the exact one-dimensional solution via GITT 
(Guigon et al., 1999), for the average temperature and average moisture content at the position Z=0, 0.5 and 1. Other 
parameters of importance for the analysis were taken as: Lu=0.4, Pn=0.6, Ko=5.0, Biq=Bim=2.5, ε =0.2 and Q=0.9.  

As expected, the lumped, CIEA and 2Dsolutions are in perfect agreement with the 1D solution for Biqr=0. As Biqr 

increases, the average temperatures obtained with the approximate solutions tend to be smaller than that for the 1D 
solution, due to the lateral heat losses. The same behavior is observed for the average moisture content. By comparing 
the 2D approximate solutions, we can notice that the average temperatures and the average moisture contents tend to be 
larger with the H1,1/H0,0 approximation than with the lumped approach. It can be observed from Figs. 1a e 1b at Z=0, the 
CIEA solution are in agreement with the 2D solution for Biqr=1 and 10.0. The solution via GITT of the two-dimensional 
problem given by equations (1) was implementation here, allowing for the verification of the progressive accuracy loss 
in the classical lumped analysis. The comparison of the two approximate solutions proposed in Dantas et al. (2007) with 
such a 2D solution identifies ranges of validity in terms of the radial Biot number, for different values of Lu, Pn, Ko, Biq, 

Bim, Q and ε.  
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Figure 1. Comparison of lumped, improved lumped and two-dimensional solutions for temperature and moisture 
potential profiles with different thermal Biot numbers. 
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Figure 2 – Comparison of lumped, improved lumped and two-dimensional solutions for temperature and moisture 
potential profiles with different thermal Biot numbers. 
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Figure 3 – Comparison of lumped, improved lumped and two-dimensional solutions for temperature and moisture 

potential profiles with different thermal Biot numbers. 
 

5. CONCLUSIONS 

 

The use of hybrid tools in formulation, solution and computation of thermal problems has been discussed and 
illustrated. The hybrid nature present in these research fronts has been allowing for exciting findings on improved 
characteristics and for continuous progress in comparison with conventional approaches. While much has already been 
achieved, as demonstrated by the ample literature available, research needs, at the same pace, become more evident. The 
Coupled Integral Equations Approach has been recently employed to provide a priori error analysis, with encouraging 
results, and should be progressively extended to more complex nonlinear formulations. The Generalized Integral 
Transform Technique enters now a phase of algorithm refinement and optimization, which includes advanced filtering 
and reordering schemes, enhanced approaches for ODE systems, and automatic implementation for arbitrarily irregular 
geometries. The Mathematica system has been intensively employed in conjunction with the approaches above 
described, aimed at further facilitating the analytical development task.  
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