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Abstract. The biped gait is one of the most complex in Nature. It requires not only an adequate physical structure, but
also an extremely accurate control system. Locomotion of humans and animals, performed by rhythmic and
synchronized movements, involves a very large number of degrees of freedom, becoming essential a good coordination
between them. The main part of this coordination is performed by spinal marrow, which generates signals according to
the movement pattern of the desired gait. This process of signal generation can be modeled by a pattern generator,
which can be designed as a network of nonlinear oscillators. Therefore, the objective of this work is the application of
a coupled hybrid van der Pol-Rayleigh oscillators system for simulating the central pattern generator of human being.
A 2D model was analyzed, with the three most important determinants of gait, that performs movements in the sagittal
plane. Using oscillators with integer relation of frequency, the response as a function of time and the stable limit cycles
of the network formed by three oscillators were determined, showing the behavior of hip and knees. From plotted
graphics, the system provided excellent results when compared to experimental analysis, proving that the use of
coupled hybrid van der Pol-Rayleigh oscillators can represent an excellent method to signal generation, allowing their
application for feedback control of a walking machine, presenting optimized functioning in relation to the systems that
use only van der Pol or Rayleigh oscillators.

Keywords: CPG, gait, locomotion, oscillators.

1. INTRODUCTION

The first indications that the spinal marrow could contain the basic nervous system necessary to generate locomotion
date to the beginning of 20th century. According to Mackay-Lyons (2002), nervous networks in the spinal marrow are
capable to produce rhythmic movements, such as swimming, walking, and jumping, even when isolated of the brain and
sensorial inputs. These specialized nervous systems are known as nervous oscillators or central pattern generators
(CPGs).

The human locomotion is controlled by the central nervous system, in which the CPG supplies a series of pattern
curves. This information is passed to the muscles by means of a network of motoneurons, and the muscular activity
performing the locomotion. Sensorial information about the environment conditions or some disturbance are supplied as
feedback of the system, providing a fast action of the CPG, which to adjust the gait to the new situation (Ivanenko et al.,
2003). Other significant works about vertebrate locomotion controlled by CPG, including human locomotion, are
presented by Grillner (1985), Pearson (1993), Collins and Richmond (1994), Calancie et al. (1994), and Dimitrijevic et
al. (1998).

Nonlinear oscillators system can be used as a central pattern generator, providing necessary information for
locomotion. Each pattern of movement requires a set of oscillator parameters and couplings. The gait can be modified
by changing some parameters. A great number of studies about the application of this principle has been performed,
specially the application in hexapod (Collins and Stewart, 1993), quadruped (Collins and Richmond, 1994) and biped
models (Bay and Hemami, 1987, Zielinska, 1996, Dutra et al., 2003, Pina Filho et al., 2005, and Pina Filho, 2005). In
this work, the CPG uses a set of hybrid van der Pol-Rayleigh oscillators, where each oscillator generates angular
reference signals for the motion of a single link (knees and hip).

2. MECHANICAL MODEL

The modeling of natural biped locomotion is made more feasible by reducing the number of degrees of freedom
taken into consideration. This is possible from the use of the determinants of gait, which represent the most important
movements in the course of the locomotion cycle. According to Saunders et al. (1953), there are six determinants of
gait: the compass gait, that is performed with stiff legs like an inverted pendulum; the pelvic rotation about a vertical
axis; the pelvic tilt; the knee flexion of the stance leg, which effects combined with pelvic rotation and pelvic tilt
achieve minimal vertical displacement of the center of gravity; the plantar flexion of the stance ankle; and the lateral
displacement of the pelvis.
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In order to further simplify the investigation, a 2D model that performs only movements in the sagittal plane will be
considered. This model, presented in Fig. 1, characterizes the three most important determinants of gait: 1 (compass
gait), 4 (knee flexion of the stance leg), and 5 (plantar flexion of stance ankle). The model does not take into account the
motion of the joints necessary for the lateral displacement of the pelvis, the pelvic rotation, and the pelvic tilt.

Figure 1. 2D model with the three most important determinants of gait and the relative angles.

The walking period can be divided in two intervals: single support phase (SSP), where one of the legs perform the
movement of balance while the other is responsible for the support (the extremity of the support leg is assumed to be
not sliding); and double support phase (DSP), where the transition of the legs occurs, i.e., the balance leg becomes the
support leg and the other leg prepares to initiate the balance movement.

3. HYBRID VAN DER POL-RAYLEIGH OSCILLATOR

A hybrid oscillator have characteristics of two types of oscillators and whose equation presents a combination of
terms of these oscillators. Considering the equations of van der Pol:
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and Rayleigh:
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the equation of hybrid oscillator that will be used in the analysis is:
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where ε, p, δ, q and Ω are the parameters of the oscillator. Using xy &= , we have the following autonomous system:
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Choosing values for ε, p, δ, q, Ω and x0, using a program that integrates ordinary differential equations (ODE), it is
possible to plot the graphic representation of x and x&  as functions of time and the trajectory in the phase space.

Setting ε = p = δ = q = Ω = 1 and x0 = 0, and using the Matlab, the graphic representation illustrating the hybrid van
der Pol-Rayleigh oscillator behavior was generated. Figure 2 shows the periodic movement of the oscillator and the
limit cycle.
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An interesting characteristic of the hybrid oscillator is that depending on the relation between the values of ε and δ,
it assumes a similar behavior to the van der Pol oscillator or Rayleigh oscillator. This is important because these
oscillators have distinct behaviors, which can be assumed by the hybrid oscillator. In electric point of view, the
oscillators answer to an increase of voltage of different form. In the case of the van der Pol oscillator, an increase of the
voltage implies in increase of the frequency, while in the Rayleigh oscillator it implies in an increase of the amplitude.

More details about the characteristics and behavior of these oscillators are described in Hebisch (1992).

   

Figure 2. Graphical representation of x and x&  as a function of time, and the limit cycle.

4. OSCILLATORS SYSTEM

From the model shown in Fig. 1, the hip angle θ9 and the knee angles θ3 and θ12 will be determined by a nonlinear
oscillators system. Experimental studies of human locomotion (Braune and Fischer, 1987) and Fourier analysis of these
data (Dutra, 1995) show that the motion of knees and hip angles can be described very precisely by their fundamental
harmonic, whether the biped is in DSP or SSP. Figure 3 shows the experimental results where θ3m, θ9m and θ12m

represent the curves built by means of experimental studies and θ3h, θ9h and θ12h represent the approximation of these
curves using the Fourier analysis. A set of three coupled oscillators was used to generate the angles θ3, θ9 and θ12. These
oscillators are mutually coupled by terms that determine the influence of one oscillator on the others (Fig. 3).

         

Figure 3. Experimental results and approximation using Fourier analysis, and coupled oscillators system.

Considering oscillators with the same frequency, a network of n-coupled hybrid van der Pol-Rayleigh oscillators can
be considered. From Eq. (3) and adding a coupling term that relates the velocities of the oscillators, we have:
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where εi, pi, δi, qi, Ωi and ci,j are the parameters of this system.
For small values of parameters determining the model nonlinearity, we will assume that the response is

approximated by low frequency components from full range of harmonic response. Therefore, periodic solutions can be
expected, which can be approximated by:

( )iiioi tA αωθθ ++= cos (6)

We desired to determine the values of the parameters qi, pi e Ωi. In this case all oscillators have the same frequency
ω. Deriving Eq. (6) and inserting the solutions in Eq. (5), by the method of harmonic balance (Nayfeh and Mook, 1979),
the following nonlinear equation system is obtained:
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Moreover, it is possible to verify the following relation proposal by Hebisch (1992):
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Then, substituting the value of qi in Eq. (7) and solving, the parameters pi and Ωi are:

( )[ ] niAAc
AAA

p jiji

n

j
ji

iiii

i

i
i  ..., 2, 1,           cos11

1
,322

=−−++= ∑
=

αα
εε

δ
(9)

( ) nicA
A ji

n

j
jij

i
i  ..., 2, 1,             sen

1
,

2 =−−=Ω ∑
=

ααωω (10)

Given the amplitude iA  and jA , phase αi and αj, the frequency ω and the chosen values of εi, δi and ci,j, the value

of the parameters qi, pi and Ωi can be calculated.
In the case of oscillators with different frequencies, the oscillators with frequency ω can be synchronized with other

oscillators with frequency nω, where n is an integer. In analyzing human gait, we can observe that some degrees of
freedom have twice the frequency of the others (n = 2), that can be seen in Fig. 3.

Therefore, a network of coupled hybrid van der Pol-Rayleigh oscillators can be described as:
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where ( )[ ]ioiiihc θθθ −&
,  is responsible for the coupling between two oscillators with different frequencies, while

( )khkhc θθ && −,  effects the coupling between two oscillators with the same frequencies.
Using a similar assumption as previously applied, we have:

( )hhhoh tA αωθθ ++= 2cos (12)

( )iiioi tA αωθθ ++= cos (13)

( )kkkok tA αωθθ ++= 2cos (14)
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Deriving Eq. (12)-(14) and inserting the solutions in Eq. (11), a nonlinear equation system is obtained, and solving
this system, the parameters ph and Ωh are:
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Given the amplitude hA , iA  and kA , phase αh, αi and αk, the frequency ω and the chosen values of εh, δh, ch,i and
ch,k, the value of these parameters qh, ph and Ωh can be calculated.

5. ANALYSIS OF THE SYSTEM AND RESULTS

Considering the oscillators system presented in Fig. 3, from Eq. (11) the system can be described as:

( ) ( ) ( ) ( )[ ] ( ) 0 1 ]1[ 12312,39999,333
2
33

2
3333

2
33333 =−−−−−Ω+−−−−− θθθθθθθθθδθθθεθ &&&&&&&& ccqp ooo (17)

( ) ( ) ( ) ( )[ ] ( )[ ] 0 1 ]1[ 12121212,93333,999
2
99

2
9999

2
99999 =−−−−−Ω+−−−−− oooo ccqp θθθθθθθθθθδθθθεθ &&&&&&& (18)

( ) ( ) ( ) ( )[ ] ( ) 0 1 ]1[ 3123,129999,121212
2
1212

2
12121212

2
1212121212 =−−−−−Ω+−−−−− θθθθθθθθθδθθθεθ &&&&&&&& ccqp ooo (19)

The synchronized harmonic functions, corresponding to the desired movements, can be written as:

( )3333 2cos αωθθ ++= tAo (20)

( )999 cos αωθ += tA (21)

( )12121212 2cos αωθθ ++= tAo (22)

Considering α3 = α9 = α12 = 0 and deriving Eq. (20)-(22), inserting the solution in Eq. (17)-(19), the necessary
parameters of the oscillators (qi, pi e Ωi, i ∈ {3, 9, 12}) can be determined. Then:
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From Eq. (17)-(19) and Eq. (23)-(31), and using the Matlab, the graphs shown in Fig. 4 and 5 were generated; they
present, respectively, the behavior of the angles as a function of time and the stable limit cycles of the oscillators.

These results were obtained using the parameters shown in Tab. 1, as well as the initial values provided by Tab. 2.
All values were experimentally determined.

Figure 4. Behavior of θ3, θ9 and θ12 as a function of time.

Figure 5. Trajectories in the phase space (stable limit cycles).

Table 1. Parameters of hybrid van der Pol-Rayleigh oscillators.

c3,9 c9,3 c3,12 c12,3 c9,12 c12,9 ε3 ε9 ε12 δ3 δ9 δ12

0.001 0.001 0.1 0.1 0.001 0.001 0.01 0.1 0.01 0.01 0.1 0.01

Table 2. Experimental initial values.

Cycle A3 A9 A12 θ3o θ9o θ12o

0 < ωt ≤ π −29 50 10 32 0 −13
π < ωt ≤ 2π −10 50 29 13 0 −32
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In Fig. 5 the great merit of this oscillator can be observed, i.e., if an impact occurs and the angle of one joint is not
the correct or desired, it returns after a small number of periods to the desired trajectory. Considering, for example, a
frequency equal to 1 s−1 and null initial velocities, with arbitrary initial values: θ3 = −3°, θ9 = 40° e θ12 = 3°, after some
cycles we have: θ3 = 3°, θ9 = 50° e  θ12 = −3°.

Comparing the results supplied for the coupling system using hybrid van der Pol-Rayleigh oscillators with the
experimental results presented in recent work about human gait (Raptopoulos 2003), it is verified that the coupling
system supplies similar results, which confirms the possibility of using coupled hybrid van der Pol-Rayleigh oscillators
in the modeling of the CPG. Figures 6 and 7 present the results comparison.

Figure 6. Behavior of the hip angle in the course of one locomotion cycle

Figure 7. Behavior of the knee angle in the course of one locomotion cycle

An interesting characteristic of the hybrid oscillators, verified in the course of the tests, is the fact of it to recover the
periodicity of the movement faster than the van der Pol oscillators, using similar parameters (Fig. 8). Therefore, if a
small disturbance occurs and the angle of a joint is not the correct or desired, it is return more quickly to the desired
trajectory. This difference in the recovery time is most significant in relation to the hip angle, but for the angles of the
knees a small advantage for the hybrid oscillator still exists. The same advantage also exists in relation to Rayleigh
oscillators, since the behavior of these is similar to van der Pol oscillators.

Finally, applying the system to the bipedal robot, we obtained the response shows in Fig. 9, which represents the
gait with a step length of 0.5 m. The model have identical legs with 0.37 m for femur and tibia, and 0.11 for feet. Other
step lengths and gaits can be simulated by changing some system parameters.
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Figure 8. Comparison of the recovery of periodicity in the phase space

Figure 9. Stick diagram showing the gait with a step length of 0.5 m

6. CONCLUSION

The results presented in this work and their analysis and discussion lead us to the following conclusions about the
application of hybrid van der Pol-Rayleigh oscillators for simulating the human CPG: (1) The use of these oscillators
can represent an excellent way to signal generation, allowing their application for feedback control of a walking
machine by synchronization and coordination of the lower extremities, presenting optimized functioning in relation to
the systems that use only van der Pol or Rayleigh oscillators. (2) The model is able to characterize three of the six most
important determinants of human gait. (3) By changing a few parameters in the oscillators, modification of the step
length and gait frequency can be obtained. The gait frequency can be modified by means of Eq. (20)-(22) by choosing a
new value for ω. The step length can be modified by changing the angles θ9 and θ12, with the parameters qi, pi e Ωi, i ∈
{3, 9, 12}, being responsible for the gait transitions.
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