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Abstract. The interaction of a structure with a flowing in which it is submersed rise to a rich variety of physical 

phenomena with applications in many fields of engineering, for example, the stability and response of floating system, 

the response of bridges and tall buildings to winds, and the vibration of turbine and compressor blades. In the present 

article, we emphasize recent developments in the treatment of moving mesh under ALE approach in finite elements 

problems with attention especial in the description of dynamic of body submersed subjected to hydrodynamics forces. 

The fluid is modeled on a stabilized finite element formulation for treat incompressible Navier-Stokes equations. This 

study presents the numerical results on the behavior of structures submersed in viscous fluid. 
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1. INTRODUCTION  

 

The crescent increase of capacity of the computers and the recent developments of the numerical methods, 

particularly in the finite element and finite volume, have been responsible by an important advance of the 

hydrodynamics problems encountered in many fields of engineering.  

In practice, this hydrodynamic problem presents many challenges due to: complex geometry, effects turbulent, 

extremely conditions of the operating and environment, all these aspects are responsible by difficulty in the numerical 

treatment of the fluid structure interaction (FSI) problems.  

For numerical simulation of such flows, detailed resolution of complex free surface topologies is important for 

understanding the physics and mechanisms of air entrainment and buble formation associate with wave breaking, which 

is one of the major sources of hydrodynamic instability, (Wilson et. al 2006). 

Basically the developments presented in this work have a set of the four subproblems, which are: (a) evaluate the 

fields of velocity and pressure, (b) mapping of the free surface, (c) compute the motion rigid body and finally (d) update 

finite element mesh of the analysis domain. All these subproblems are coupled and solved in each time step of the 

transient analysis. 

The sub problem (a) is normally called of incompressible fluid flow governed by Navier-Stokes (NS) equations. The 

firstly studies for modeling this equations via finite element approach were the developments presented in the works of 

the Hughes and Brooks (1979) and Brooks and Hughes (1982). Since then several researchers have been actively 

involved with this theme. A survey important about this topic can be encountered in the work of the Tezduyar (1992). 

The mapping of free surface, subproblem (b) is the main computational challenges in the scenario of the FSI 

problems. For treated this problem was utilized a technique of interface-capture, in this case we use the Volume of Fluid 

Method (VOF), firstly proposed by Hirt and Nichols (1981). In this method  the (NS) equation are solved over a non-

moving mesh together with time-dependent advection equation governing the evolution of  the interface function.        

 After or simultaneous to solve of the subproblems (1) and (2) the integration of the motion equations of the body 

rigid is necessarily. O motion of a floating body or immersed in fluid is a direct consequence of the flow induced forces 

acting on it while at the same time these forces are a function of the body movement itself. In general, forces exerted on 

a moving body in a viscous fluid exist of pressure forces  and viscous drag forces. The real experimental or numerical 

characterization these drag forces is yet a challenge. Aspects about skin friction due to roughness of the surface in 

contact with the fluid can induce considerably the boundary layer around the body. Strategies for coupled this motion 

can be found in Fekken (2004) and Panahi 2006. 

  Finally, is commented the subproblem (d) which is responsible for accommodation of the internal nodes of mesh, 

this step of the analysis is computed from of the motion of the body rigid. In coupled solutions strategies for FSI 

problems the essential attribute required is maintain the quality of the mesh for all the successive time steps In order to 

solve this problem we employed a smooth potential with diffusion artificial. This method was present Masud et. al 

(2007), the main goal this strategies is not need a remesh method for each time step analysis.        

The outline of this work is the following: in Section 2 we presented a formalism for the mesh moving strategy. In 

Section 3 and 4, are presented, respectively, the procedures for the treatment of coupled FSI problem and some test 

cases chosen for show the details of performance of the model proposed. In Section 5 we draw some conclusions.  
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 2. MESH MOVING MODEL 

 

The method employed for the mesh moving is based on the potential suavization with artificial diffusion (τ) no 

uniform on a discretized domain by finite element, proposed Masud et. al. (2007). The basic idea in this method 

consists in solving a Laplace equation for each direction of the moving mesh, and was proposed in the works by Lohner 

(1996) and Masud (1997). The formal statement of the boundary value problem for finding the field of the displacement 

(u) for each node of the mesh, is given by: 

    

   01  u  (1) 

 

mongu    (2) 

 

fonu  0  (3) 

 

The Equations (1)-(3) represent the governing equation, the imposed movement by external actions of the fluid on 

Γm and the fixed boundary conditions on Γf, respectively. The definition of the artificial diffusion (τ) which is non-

dimensional and appears in the equation (1) is defined only by the geometric proprieties of all finite elements. For a 

given element (e), its artificial diffusion is given by: 

  

   

max

maxmin

/

/1

VV

VV
e

e 
  (4) 

 

where V
e
, V

max
 and V

min
, are the volumes, respectively, of the current element (e), the largest and smallest element in a 

given mesh. This geometric parameter was designed to move the smaller element in the boundary layers together with 

the interface with the least amount of distortion so as to attain well-conditioned meshes for subsequent time steps.  

For a brief analysis of the sensibility for the parameter (τ), curves are showed in the Fig 1 indicating the variation of 

(τ) versus the level of refinement for three cases: (i) a mesh with relation 1:20, i.e. Vmin =0.5, Vmax =10; (ii) mesh with 

relation 1:10, i.e. Vmin=1.0, Vmax=10 and (iii) mesh 1:2, i.e. Vmin =5, Vmax =10.  Note that, for a homogeneous mesh the 

diffusion is null, in this case the Eq (1) is a typical Laplace equation.    

 

 
 

Figure 1. Curve of  artificial diffusion for three typical mesh non-homogenous. 

 

For a FSI problem, using the ALE approach, it is necessary the computation of the mesh velocity (vmesh) in each time 

step of the analysis, as follow:  
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3. FSI COUPLING 

 

In this work the fluid flow will be considered by the motion of the two single-phase fluids (air-water), treated by 

incompressibility assumption and separated by an interface (free surface).  The single-phase assumption requires that 

the effect of one fluid on the other is very small. This assumption is reasonably because the physical properties of water 

and of air are distinct by a ratio of the 1:1000.  

All these assumptions should be valid in cases which  the liquid-gas interface remains a free boundary. Although 

complex flow can be managed with the single-phase model, extremely cases of the small-scale as free surface 

turbulence, capillary waves, air entrainment and bubbles due to breaking waves were not resolved with satisfactory 

accuracy. Along of the interface the surface tension is negligible. 

 

3.1. Incompressible fluid flow in the ALE approach 

 

The governing equations for flow fluid are the incompressible Navier-Stokes equations written for two fluids in the 

ALE domain. These equations are: 
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where 

 

vp s 2Iσ  (8) 

 

Here u, p, g, ρ and µ are fluid velocity, pressure, gravitational force, density, and dynamic viscosity, respectively; 

and umesh is the mesh velocity given by Eq. (5). 

To simulate the behavior of the free surface was designed an interface scalar function υ(x,t) which assume only 

values between [0,1]. This function is the crucial ingredient of the volume-of-fluid (VOF) method, which was firstly 

proposed by Hirt and Nicholson 1981. This method will be briefly reviewed here, more details about the formulation of 

this method may be found in, Kleefsman (2005) and Elias and Coutinho (2007).  

The scalar function υ is transported by time-dependent advection equation, as following: 
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Initially, is assumed the value 1.0 in regions filled with water, null for air and for the free surface 0.5 is usually 

assumed. After evaluating υ(x,t), the density and viscosity in the fluid flow solution are interpolated across the interface 

as follow: 

 

   21 )1(    ,    21 )1(                                                                                                       (10) 

 

The finite formulation of Eq. (6), (7) and (9), will not be showed here, but a detailed description can be found in, 

Tezduyar and Liou 1990 and Franca and Frey (1992). 

 

3.2. Rigid body dynamics 

 

In this work the structure was considered as a rigid body. The motion consists in the superposition of the translation 

produced by resultant hydrodynamic forces and its weight and the rotation caused by moments around the body mass 

center. These hydrodynamic forces are evaluated following the solving of the fields (u,p). The rigid body is moved 

attached to the mesh in each time step of the analysis.    
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The motion of a given rigid body is governed by the following equations: 

 

gFa mm                                                                                                                                                                             (11) 

 

M                                                                                                                                                                  (12) 

 

where m and I, are the mass of the body and its inertia matrix; a and   are the its translation and angular accelerations 

of the body. Finally F and M are the external forces e torques, both caused by the fluid in contact with the body surface.    

An explicit scheme of time integration is implemented for the Equations (11) and (12). For the translation equation 

of movement (6), a Crank-Nicholson operator is used for the velocity field in order to obtain the displacement field, as 

follows:   
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The same scheme of (13) and (14) is applied for the Euler Equation (12), but before two intermediary steps are 

presented. The first is an inversion of the matrix inertia       

 

    M1                                                                                                                                                           (15) 

 

and the second step defines the matrix M  

 

 nnnn

  MM                                                                                                                                        (16) 

 

Finally, the rotation of the body is presented    
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3.3. Equations of the coupling 

 

The internal forces of the elements surrounding the immersed body can be calculated by:  

 
ette Vdf
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                                                                                                                                          (19) 

where the tensor (σ) was defined by (8) and 
tB and 

eV being the discrete differential operator and the element volume. 

The integral (20) is evaluated on Ωsub, which is the region defined by the finite elements with nodes attached to the body 

surface. Then the resulting force on the immersed body can be found by the sum of each element internal force 

contribution (equivalent nodal forces). 

 

The resultant of the hydrodynamic force (11) on the body is given by: 
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where fn is the assemble of forces (20) for all nodes on surface of the rigid body designed by (nrb). After evaluating 

the force for each node of  (nrb) the resulting moment is calculated by the following equation: 
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with nr being the position vector of each node (nrb) to the mass center. 

 

4. TEST CASES 

 

In order to realize some test the efficiency of the formulation presented in this work, are summarized four test cases 

in the following section. Firstly we present an analysis of the mesh performance quality for 2d problems, the following 

two test cases illustrate the severe distortions in the mesh, and the last test case show a reliability in real case of the 

hydrodynamic stability.           

 

4.1. Analysis of the performance of mesh quality  

 

Two cases were considered to verify the mesh quality performance: models with square and hemispherical bodies. 

The square body mesh has 1804 triangular elements and 962 nodes against 2571 triangles and 1138  nodes for the 

hemispherical body mesh. On the figures below the initial and the deformed mesh with the quality factor plotted can be 

seen for both cases. The quality factor, Branets (2005), for each element is given by: 
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where l1,l2 e l3represents each edge of an element and A its area. This factor varies on the interval [0,1] being 0 for 

an element with null area and 1 for an equilateral element. 

 

 
(a)  

(b) 

 

Figure 2. (a) Initial square body mesh and (b) deformed mesh with element quality factor plotted. 

 

 
(a)  

(b) 

 

Figure 3. (a) Initial hemispherical body mesh and (b) deformed mesh with element quality factor plotted. 
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4.2 Suspension of a prism immersed in fluid     

 

On this tested case a submersed prism with a density of 600 kg/m³ emerges towards the free surface. The dimension 

of the model can be seen on Figure 4, where L = 0,06m, together with its mesh that has 84546 tetrahedrons and 15723 

nodes. Here, the objective is to verify the dynamics of a cubic body in suspension and the mesh behavior. 

 

  

 

Figure 4. Prism model dimensions and mesh. 

 

    
 

Figure 5. Mesh Behavior. 

 

 

 
(a) 

 

 
(b) 

 

Figure 6. Velocity vectors of section of the model(t=0.1s) and (b) the Z center of gravity time history. 
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4.3 Suspension of a sphere immersed in fluid   

 

On this tested case a submersed sphere with a density of 600 kg/m³ emerges towards the free surface. The dimension 

of the model can be seen on Figure 7, where L = 0,06m, together with its mesh that has 113272 tetrahedrons and 20777 

nodes. Here, the objective is to verify the dynamics of a spherical body in suspension and the mesh behavior. 

 

  
 

Figure 7. Sphere model dimensions and mesh. 

 

 
  

 

Figure 8. Mesh Behavior. 

  

 

 
(a) 

 

 
(b) 

 

Figure 9. Velocity vectors of section of the model(t=0.3s) and (b) the Z center of gravity time history. 
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4.4 Analysis of the stability of a cylinder     

 

This model has as objective to study the stability of a floating cylinder by analyzing the buoyancy time history and 

the forces actuating on its surface. A small elevation on the free-surface was modeled in order to generate a wave so 

that the body is removed from its state of static equilibrium.  

 

 

     

 

 

Model Data: 

 

 Elements = 151085; 

 Nodes = 27306; 

 Density = 500kg/m³ 

 Radius = 0,025 m 

 

Figure 10. Stability model dimensions and data. 

 

 
(a) 

 
(b) 

 

Figure 11. The free surface behavior: (a) t = 0.6s  and (b) t = 0.86s . 

 

 

 
(a) 

 

 
(b) 

 

Figure 12. (a) Velocity vectors of section of the model and (b) the buoyancy time history. 
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5. CONCLUSIONS 

 

This work showed an unsteady single-phase method presented under an ALE approach for description of the Navier-

Equations finite element equations. For the motion of the interface between the two fluids is used the VOF method.  

There are still challenges on the mesh moving area, on the treatment of the free surface and finding robust methods 

remains a crucial objective to guarantee the physical reliability of the numerical codes. In this context some themes can 

be cited: consideration of the two-phase flow (air-water) and the developing of schemes to capture the superficial 

tension.  

The formulation presented has shown to be a robust numerical tool to analyze large amplitude motions on problems 

involving fluid-structure interaction. The main goal of the numerical apparatus collection presented is the qualitative 

fidelity of the configurations, mainly the test case of the cylinder stability. 

Finally, it is important to salient that the mesh moving method used on this article is not recommendable for 

problems with very high motions of the moving body, in some cases the aspect ratio of the elements can affect 

considerably the accuracy of the fluid flow solver.       
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