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Abstract.. The dynamic mechanical characterisation of a given material is usually performed via the Split Hopkinson 

Pressure Bar, SHPB. In this device, a sample material is sandwiched between two long bars. One of the bars is hit by a 

striker, setting in motion the propagation of elastic waves. To avoid superposition of the pulse reflectedin the bar-

sample interface, the deformation readings of the bar cannot be made in the contact interface. Hence, it is necessary to 

shift in space the measured pulse, which then causes a distortion of the signal. This paper aims to correct such a  

distortion, the so called dispersion, for the pulse signal measured in tests with the polymer PVC. It is also considered 

the influence of the radial inertia on the measured dynamic stress-strain curve. It is found that the PVC dnyamic stress-

strain curve curve is affected by dispersion effects and that inertia plays a minor role. 
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1. INTRODUCTION  

 

Thermoplastics are important polymers used in the manufacturing of many components, as the ones used in the 

automotive industry and packaging devices. These applications usually require a detailed structural analysis which, in 

turn, can only be reliably performed if the material behaviour is well understood. 

There has been a substantial research effort during the last decades to understand the behavior of polymers (Arruda 

and Boyce, 2000), including its dynamic response (Du Bois et al., 2006). It is clear that thermoplastics constitutive 

models rely on material parameters that must be measured. Hence, any knowledge of the response of polymers to load, 

temperature, environment, etc... is important. In the case of structures undergoing large strains and dynamic loads, the 

material model should contemplate strain rate effects on its response (Rittel and Dorogoy, 2008 and Bouix et al., 2009). 

To evaluate strain effects in a material, one should perform tensile or compressive tests at different speeds. This is 

most simply accomplished by using the so called Split Hopkinson Pressure Bar (SHPB). This device, shown in Figure 

1, consists of a striker which is launched against a long cylindrical input bar. The material sample is sandwiched 

between two long bars. Strain gages positioned in the middle of both bars are able to capture the incident, reflected and 

transmitted strain waves. From these signals, it is possible to calculate the stress-strain curve by simple formulae (Zhao, 

2003) which are derived using three major assumptions: (i). propagating of waves in the bar is described by one-

dimensional wave propagation theory. (ii). the stress and strain fields in the specimen are uniform in its axial direction. 

(iii). inertia effects and friction effects in compression test are negligible. 

A 3D theory of propagation of pulses in cylindrical bars was developed by Pocchammer (1876) and Chree (1941). 

They found a relation between phase velocity and frequency of a wave travelling in a long bar. This relation is essential 

to be understood and used if dispersion effects are to be taken into consideration. This task is pursuit here. Also, based 

on the work of Davies and Hunter (1963), lateral inertia expansion of the sandwiched tested material is explored. It is 

possible then to infer how both effects, wave attenuation and material radial and axial inertias, affect the measured 

curve. This theory is here applied to a single test of a PVC polymer. 

 

2. SPHB CORRECTIONS 

 

2.1. Pochhammer-Chree frequency equation 

 

The SPHB in Fig. 1 consists of a striker and two long bars with a short specimen sandwiched between them. The 

striker is accelerated by a gas gun and impacts the input bar. 
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Figure 1. SPHB and operation scheme. 

 

This impact generates a compressive pulse in the input bar that travels along its length until it reaches the interface 

bar-specimen. The pulse is partially transmitted through the specimen to the output bar and partially reflected in the 

input bar. The time history of these pulses, incident, εi, reflected, εr, and transmitted, εt,  are measured by strain gages 

located in the input and output bas. A Wheatstone bridge is used to read this signal originated in the strain gages and it 

is amplified by a high speed transducer amplifier. The stress, σs, strain, εs, and strain rate,  sε& , are simple to calculate 

from these pulses by 
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where  0c E ρ=   is the velocity of the elastic wave, E is the Young’s modulus, ρ is the density, A  is the cross section 

area of the bars, sL  and sA  are the length of the specimen and its cross section area. The strain gauges used to measure 

the strain pulses are located far from the specimen interfaces in order to avoid superposition of the incident and 

reflected pulses. It is usually assumed that these waves will not change shape as they travel to the station measurement 

points. However, they do change their amplitude due to the radial restriction of the bars, so that energy is consumed for 

radial expansion of the bars. This is what one calls wave dispersion. 

The equations of motion in polar coordinates are Kolsky (1963), 
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where ∆ is the dilatation in cylindrical coordinates given by: 
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and  λ , µ are Lamé’s constants. rϖ , θϖ , zϖ  are the rotational components about the three orthogonal directions and ru , 

θu , zu are the displacements. If the propagation is axi-symmetric, θu  is null and so are the two stress components at the 

bar surface. The relation between these and the strains are given by 
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A relation between material properties, phase velocity, cylinder radius and frequency can be found as 
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where a is the radius of the rod,  
ar ar ∂

∂
=

∂

∂

=

, 0J is the Bessel function of first kind of order zero, 1J  is the Bessel 

function of first kind of order one, p is the angular frequency, γπ2=Λ is the wavelength and h ′ and κ ′ are: 
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For any chosen p ,  many γ  will satisfy the so called Pochhammer-Chree Frequency equation, each one 

representing a vibration mode shape of the bar. The phase velocity can be easily found by γpVp = . Although for a 

single frequency there can be many vibration shape modes present, each one with a different phase velocity, the 

correction method can allow only one phase velocity per frequency. So, it is necessary to find out which is the 

predominant shape mode for each frequency. To determine the rate at which the energy of a pulse is propagated, the 

group velocity, 
gV  should be calculated. The group velocity is defined as the propagation speed of a packet of waves, 

with the wavelengths of the component waves of the package being close to Λ . In other words, the mode with higher 

group velocity will be predominant. Mathematically, the group velocity can be calculated as 
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  Figure 2 shows the phase and group velocity as a function of the frequency for the bar in Figure 1, with 25.4 mm 

diameter, 214.11GPa Young´s modulus, 0.29 Poisson and 7896 kg/m
3
 density. Figure 3 shows the phase velocity used 

in the correction method. 
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Figure 2. Phase and group velocities as a function of frequency 

 

 
 

Figure 3. Phase velocity used for the dispersion correction 

 

2.2. Dispersion correction 

 

The Fast Fourier Transform, FFT, is the tool used for the correction of dispersion. One of its properties, the time 

shifting, can be described as 

 
ττ jwewFtf −⇔+ )()(                                                                                                                                              (12) 

 

where )(tf is a function in the time domain and )(wF is its Fourier Transform. The time τ can be calculated by 
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where z is the distance from the stain gauge to the interface bar/specimen. Therefore, the strain in the interface, *ε , can 

be obtained from the strain measured by the strain gauges, ε , as 
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It can be seen that the phase velocity, obtained from Figure 3 for the bar under study, is essential for the dispersion 

correction according to equation (14). 

 

2.3. Inertial effects correction 

 

According to Davies and Hunter (1963), radial and axial inertia of the sample material lead to an overestimation 

and underestimation of the actual material stress response, respectively. They developed a relation between the stress 

measured in the bar/specimen interfaces, 
bσ  , and the actual specimen stress, 

sσ , given by 
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where 
sρ and 

sν  are the density and Poisson for the material of the specimen, l  and d  are the length and diameter of 

the specimen and ε  is the axial strain. 

 

3. EXPERIMENTAL SET-UP AND RESULTS 

 

The bars of the SHPB apparatus in Figure 1 are made of  high-strength steel, with 7896 Kg/m
3
 of density. Both bars 

are 1.4 m long, 25.4 mm diameter. Two diametrically opposed Excel PA-13-062AB-120L strain gauges are glued close 

to the middle of each bar, at 731mm in the input bar and at 739 mm in the output bar. The strain gauges are connected 

to a Fylde FE-H395-TA high speed transducer amplifier.  

The electrical voltage is digitalized by a National Instruments PCI-6110, 12-Bit, 5 MS/s/ch, Multifunction data 

acquisition system. Both the control of the acquisition PCI board and the data processing are performed using Matlab. 

The steel striker used in all the tests is 214 mm long and diameter 25.4 mm. From the PVC sample material, disks of 20 

mm diameter and 4 mm thick were manufactured and tested statically and dynamically. According to the manufacture 

of the PVC, its density is 1430 Kg/m
3
 and the Young´s modulus is 3 GPa. 

Figure 4 shows the quasi-static and one dynamic curve at engineering strain rates of 0.001 and 3000/s, 

respectively. The dynamic curve is corrected due to dispersion and inertia effects. 

 

4. CLOSURE 

 

It is clear from Figure 4 a large discrepancy between the stress-strain curves with and without dispersion effects. 

This is specially true for small strains, up to around 10%. It is interesting to note that the Young’s modulus of the PVC 

is expected to increase with the strain rate since this material is visco-elastic. This is the case shown in Figure 4 when 

correction for the dispersion is applied to the measured data. If the dispersion correction was overlooked, then visco-

elastic effects in this polymer would not be captured by this test. 

Although the dispersion correction is quite important, Figure 4 also shows that inertial effects can be neglected, at 

least for this polymer at this strain rate of 3000/s. This is so partially due to the low density of this material, which then 

does not require much energy to be radially expanded and axially compressed. 
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Figure 4. Dynamic stress strain curves for PVC. 
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