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Abstract. Natural ventilation inside constructions allows both favorable conditions for thermal comfort to the 

occupants and quality improvement of the internal air. The efficiency of natural ventilation in a building is associated 

to the number, position, type and size of the existing openings for the passage of air. It is also associated to the 

combined action of wind forces and temperature differences. Thus the construction of openings in both the front and in 

the coverage of buildings, provide improvements in natural ventilation also assisting in the internal lighting 

environments. This paper aims to analyze numerically the natural ventilation within an industrial shed. This will be 

used for a commercial software which solves the equations governing this type of flow in their conservative (the 

conservation of mass equation, momentum and energy) coupled to a turbulence model. The results will be compared 

with analytical methodologies for analysis of the use openings in the roofs (skylight with an entrance and an exit) in 

sheds and natural convection, validated methodology that provides a better analysis of thermo-fluid dynamics 

processes within buildings.  
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1. INTRODUCTION  

 

The Natural ventilation inside constructions allows both favorable conditions for thermal comfort to the occupants 

and quality improvement of the internal air. The efficiency of natural ventilation in a building is associated to the 

number, position, type and size of the existing openings for the passage of air. It is also associated to the combined 

action of wind forces and temperature differences. Thus the construction of openings in both the front and in the 

coverage of buildings, provide improvements in natural ventilation also assisting in the internal lighting environments. 

In the past two decades, building fire field model (or application of computational fluid dynamics (CFD)) has been 

developed and used to some extent in the construction industry for fire designs and related academic research projects. 

The study of natural convection through mathematical techniques were demonstrated by several researchers, where 

we cite a few works such as Chow (1996) who conducted a study showing the importance of CFD techniques to the 

behavior of various phenomena (fire, air conditioning , heat distribution, among others) inside buildings, experimentally 

validating their various cases. Likewise, Mazon (2006) and Ji (2007) also through Computational Fluid Dynamics also 

demonstrated the efficiency of this methodology in predicting the flow of natural convection. 

 Macintyre (1990), Costa (2005) among other authors conservative formulations have to scale buildings as well as 

the use of CFD in this work is expected to be a better approximation to the real data.  

The objective of this work is to study through computational fluid dynamics (CFD) is possible to predict the fluid 

dynamic behavior of the heated air inside buildings, making sure that the formulations presented by Marc are consistent 

in size, openings for air exchanges between the interior and exterior of buildings and thereby ensure the thermal comfort 

inside. 

 

2. METHODOLOGY  

 

The modeling and the simulation of the flow are made using the commercial package Ansys CFX-11.0, “CFX 

(2004)”. This software possesses the following characteristics: discretize the conservation equations by the finite 

volumes method centered in the vertex; solves laminar and turbulent three-dimensional problems; uses unstructured and 

hybrid meshes; solves conjugated problems of heat and fluids flow. The use of no-structured meshes allows mesh 

refinements to be applied near the surfaces, where great variations of speed and temperature occur. 

The Equations (1, 2 e 3) represent respectively, conservation of mass, momentum and energy, respectively, under 

the decomposition of Reynolds and Boussinesq approximation. The term SM defined in Equation 2, represents the end 

of fluctuation. 
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Where all the effects due to viscous stresses in the internal energy equation are describe by dissipation function , 

which, after considerable algebra, can be shown to equal to: 

 

 (5) 

 

The source term showed in Equation (2) is used for Buoyancy Forces, can be shown to equal to 

 

 (6) 

 

2.1 Turbulence Model 

 

The model of turbulence quite robust and capable of predicting this flow is the SST-k-RNG k-ω, which uses the 

turbulent viscosity (μt), together with the equations of transport of the turbulent kinetic energy, k, and the dissipation of 

energy, ε, where these terms are defined by CFX (2004) as: 

 

2.1.1 The k-ω models 

 

The k-ω models assumes that the turbulence viscosity is linked to the turbulence kinetic energy and turbulent 

frequency via the relation: 

 

 (7) 

 
Where the k-ω model developed by Wilcox (1986) solves two transport equations, one for the turbulent kinetic 

energy, k , and one for the turbulent frequency, ω. The stress tensor is computed from the eddy-viscosity concept. 

k-equation: 

 

 (8) 

 

ω -equation: 

 

 (9) 

 

In addition to the independent variables, the density, , and the velocity vector, U, are treated as known quantities 

from the Navier-Stokes method. Pk  is the production rate of turbulence. 

The model constants are given by: 

 

Table 1. The k-ω model constants 

 

β' α β σk σω 

0.09 5/9 0.075 2 2 

 

The unknown Reynolds stress tensor, , is calculated from: 

 

 (10) 

 

In order to avoid the build-up of turbulent kinetic energy in stagnation regions, two production limiters are available. 
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2.1.2 The Shear Stress Transport (SST) 

 

The k-ω based SST model accounts for the transport of the turbulent shear stress and gives highly accurate 

predictions of the onset and the amount of flow separation under adverse pressure gradients. 

The BSL model combines the advantages of the Wilcox and the k-ε model, but still fails to properly predict the onset 

and amount of flow separation from smooth surfaces. The reasons for this deficiency are given in detail in Menter 

(1992). The main reason is that both models do not account for the transport of the turbulent shear stress. This results in 

an over prediction of the eddy-viscosity. The proper transport behavior can be obtained by a limiter to the formulation 

of the eddy-viscosity: 

 

 (11) 

 

Where 

 

 (12) 

 

Again F2 is a blending function similar to F1, which restricts the limiter to the wall boundary layer, as the underlying 

assumptions are not correct for free shear flows. S is an invariant measure of the strain rate. 

Blending Functions 

The blending functions are critical to the success of the method. Their formulation is based on the distance to the 

nearest surface and on the flow variables. 

 

 (13) 

 

 

Whith: 

 

 (14) 

 

Where y is the distance to the nearest wall,  is the kinematic viscosity and: 

  

 (15) 

 

 (16) 

 

With: 

 

 (17) 

 

2.2 Radiation Model 

 

The simulation of heat exchange between the various surfaces by means of radiation was made using the method of 

Monte Carlo. In this case it was necessary to define the values of emissivity for each surface considered. Table 2 

summarizes the values taken from literature Incropera and DeWitt (2003). If the emissivity of casting material was 

between the values presented by Seggiano (1988), Kreith  (2003), Pirker at al. (2002) and Gosselin and Lacroix (2003). 

 

Table 2. Emissivity Values 

 

Location Emissivity 

Casting Material 0,7 

Roof 0,92 

Walls 0,92 

Ground 0,93 
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2.3 Domain Computational 

 

The Figure 1 (a) shows the computational domain used, where the side vents (red) represent the air inlet and the 

openings in the roof (green) are supposed to air exits. The blue areas designated by R1, R2, R3 and R4 represent plans 

to generate heat. The Figure 1 (b) study shows plans for the disposal sites (P1, P2, P3 and P4, shows that besides the 

dimensions of the shed (W = 30 m, L = 70 m H = 15 m).  

 

  
(a) (b) 

 

Figure 1. Boundary condition locations in the computational domain. 

 

To represent a situation where involves a extreme case, external sources were not considered as wind and heat. Like 

this the Table 3 showed the boundary conditions imposed on the surfaces R1, R2, R3 and R4. 

 

Table 3. Boundary conditions imposed on the surfaces R1, R2, R3 and R4 

 

Region Temperature (K) Heat Load (kW) 

R1 573,15 586,05 

R2 673,15 951,91 

R3 573,15 298,21 

R4 673,15 1131,59 

 

2.4 Mesh Study 

 

To analyze the error made by the numerical model various configurations of meshes were used, well as they refine 

the error between a loop and another decreased. However some settings are necessary for the success of the study, as 

the influence of wall model in the turbulence model in the physics of the problem, besides more refined mesh near the 

wall and the hot sources to avoid propagation of errors in numerical analysis, limited by the wall model. 

The Figure 2 (a) shows the mesh detail near the 3 plans P1 and P2 on the surface R3 and Figure 2 (b) also shows 

details of the plan P2 on the surface R3, showing the level of detail near the surface. 

 

 

  
(a) (b) 

Figure 2. Mesh detail 
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The Table 4 shows details of the meshes used in numerical simulation showing the error found in each mesh used, 

showing the error found in each mesh used, besides the yplus. The parameter y+ (yplus) is a non-dimensional variable 

based on the distance from the wall through the boundary layer to the first node away from the wall. It is therefore 

dependent on the size of the mesh in the wall region. If the alue of y+ is too large, then the wall function will impose 

wall type conditions further from the wall than would normally be physically appropriate. Well with this value of yplus 

guarantees a good approximation near the wall, thus not compromising the results. 

 

 

 

 

Table 4. Details of the meshes used in numerical simulation. 

 

Mesh Total Number of Nodes Total Number of Elements Error (%) Y+ 

1 419508 1538110  17,46 

2 823897 3045947 14,5 17,76 

3 1606401 6585645 3,9 20,05 

 

3. RESULTS 

 

The results shown in Figures 3 to 6, velocity vectors (a) and isosurfaces (b) at P1, P2, P3 and P4, as shown in 

Figures 7 velocity vectors in detail near the roof (a) and a hot source (b). In all Figures show upward acceleration of the 

flow due to heating of air masses, showing the ability of the model to represent the natural convection. The Table 5 

shows the results of mass flow in entry and exit air regions. The negative sign represents the direction of flow in the 

computational domain (output). 

 

Table 5. - Mass flow in entry and exit air regions. 

 

Region Mass Flow m
3
/h 

Air Inlet 1 83901,5 
Air Inlet 2 77144,9 

Air Outlet 1 -78157,7 
Air Outlet 2 -82888,7 

 

 

  
(a) (b) 

 

Figure 3. Velocity distribution on the region P1, velocity vectors (a) and velocity isosurfaces (b).  



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

  
(a) (b) 

 

Figure 4. Velocity distribution on the region P2, velocity vectors (a) and velocity isosurfaces (b).  

 

  
(a) (b) 

 

Figure 5. Velocity distribution on the region P3, velocity vectors (a) and velocity isosurfaces (b).  

 

  
(a) (b) 

 

Figure 6. Velocity distribution on the region P4, velocity vectors (a) and velocity isosurfaces (b).  
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(a) (b) 

 

Figure 7. Velocity vectors in detail near the roof (a) and a hot source (b). 

 

The result of simulation shows an average temperature inside the building is 313,15 K, presented as a . 

According Macintyre (1990) the flow required to maintain this difference in temperature is shown in Eq. 18. 

 

/hm 804877
110,288

2549851

288,0

3

t

C
Q  (18) 

 

According to the analytical model results obtained by numerical simulation was approximately 5 times less than the 

analytical results, thus showing high degree of conservatism of the model. 

 

4. CONCLUSIONS 

 

The numeric model showed to be capable to represent the physics of the problem, where vertical displacements of 

masses of air due to the variation of density happened. Theoretical models for being too conservative, provide 

engineering projects extremely expensive. Like this with base in the present study, the methodology presented by 

Marcintyre (1990) showed a drainage approximately five times adult than calculated by the numeric model, that would 

end up providing larger equipments for removal and renewal of the mass of air contained in the building, generating 

like this a larger cost.   
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