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Abstract. In general, the inverse kinematics of robots is solved by analytical methods, which are based on geometric 
intuition. As the kinematic structure of the robot grows complex, however, geometric intuition sometimes fails. This is 
the typical case of parallel robots. Some work present analytical solutions for the inverse kinematics of parallel robots, 
but in general their kinematics are conceptually simple. Eclipse and Eclipse-II are parallel robots with complex 
kinematic chains, and their inverse kinematics is obtained analytically using geometric analysis for some particular 
configurations only. This paper proposes a method to model differential kinematics for these two particular robots 
using the Assur virtual chains method. This method allows to systematize inverse kinematics resolution and to apply a 
numerical integration method with closure error control. Screw theory, Davies method, Assur virtual chains and the 
numerical integration, which are the fundamentals of the method, are shortly reviewed. A study of singularities is 
made, and a simulation of a planned trajectory to illustrate the proposed model is presented. 
 
Keywords: Parallel robots, complex kinematic chains, Assur virtual chain, singularity analysis.  

 

1. INTRODUCTION  

 
The study of parallel mechanisms is currently an area of interest for industrial applications and research. Advances 

in computing technology, allied to the development of more accurate analysis methods, motivates an increasingly 
adoption of parallel robots in production systems. 

This paper discusses a solution for the inverse position and velocity kinematics of the Eclipse and Eclipse-II parallel 
robots. The Eclipse robot was presented by Kim and Park (1998), based on design study of a kinematic structure 
capable of execute 360o operations in the workspace. Eclipse-II was first presented in 2002 (Kim et al, 2002), as an 
evolution of the Eclipse robot aimed to be used in flight simulators, because of the 360o movement feature. 

These papers presented the forward and inverse kinematics of these robots based on geometric approach, and this 
was also the case of their singularity analysis. Some work presented alternative solutions, but were also based on 
geometry (Liu et al, 2003; Altuzarra et al., 2004). Other references treat just the forward kinematics (Wang, 2006). The 
proposed methods used to obtain the differential kinematics were not systematic, and they were used in particular 
situations in each case. 

In parallel robots, singular configurations occur in both forward and inverse kinematics (Gosselin and Angeles, 
1990). Their identification can be made through kinematic differential models, which must be consistent, to make their 
analysis possible. Singularity is discussed using geometric analysis (Gregorio, 2005), and Altuzarra et al. (2004) 
presents a singularity classification for closed kinematic chains. 

This work proposes a systematic model to differential kinematics of the Eclipse and Eclipse-II robots using the 
method of Assur virtual chains (Campos et al, 2005). The virtual chains allowed the development of an integration 
method with closure error measured control (Simas, 2008), which is reviewed here. This paper also presents the 
differential model, a study of singularities and a simulation of a planned trajectory to validate the proposed model. 

This paper aims to contribute with the study of parallel robots kinematics, by demonstrating a method which can be 
used in a systematic way in the Eclipse and Eclipse-II robots, and also by presenting a method to analyze singularities. 
 

2. THEORETICAL REVIEW 
  

The description of the Eclipse and Eclipse-II differential kinematics is based on screw representation and in Assur 
virtual chains. Davies’ method is used to obtain the inverse kinematics of closed chains, while graph analysis allows 
investigation of the relationship of movement in a joint. These concepts are shortly described in the following.  
 

2.1. Screw representation of differential kinematics 

  
The general spatial differential movement of a rigid body consists of a differential rotation about, and a differential 

translation along an axis named the instantaneous screw axis. In this way the velocities of the points of a rigid body 

with respect to an inertial reference frame O-xyz may be represented by a differential rotation ω  about the 
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instantaneous screw axis and a simultaneously differential translation τ  about this axis. The complete movement of the 

rigid body, combining rotation and translation, is called screw movement or twist and is here denoted by $ . Figure 1 

shows a body “twisting” around the instantaneous screw axis. The ratio of the linear velocity to the angular velocity is 
called the pitch of the screw h=||τ||/||ω||.  

The twist may be expressed by a pair of vectors [ ]TT

p

T V;$ ω= , where ω  represents the angular velocity of the body 

with respect to the inertial frame and Vp represents the linear velocity of a point P attached to the body which is 
instantaneously coincident with the origin O of the reference frame. A twist may be decomposed into its magnitude and 

its corresponding normalized screw. The twist magnitude q&  is either the magnitude of the angular velocity of the body, 

||ω||, if the kinematic pair is rotative or helical, or the magnitude of the linear velocity, ||Vp||, if the kinematic pair is 

prismatic. The normalized screw $̂  is a twist of unitary magnitude, i.e. 

 

q&$̂$ =  (1) 

 

 
 

Figure 1. Screw movement or twist. 
 

The normalized screw coordinates (Davidson and Hunt, 2004) are written as 
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where vector s=[sx sy sz]

T denotes an unit vector along the direction of the screw axis, and vector so=[sox soy soz]
T denotes 

the position vector of a point lying on the screw axis. 
Thus, the twist in Eq. (1) expresses the general spatial differential movement (velocity) of a rigid body relative to an 

inertial reference frame O-xyz. The twist can also represent the movement between two adjacent links of a kinematic 

chain. In this case, twist $i represents the movement of link i relative to link ( )1−i . 

 

2.2. Davies’ method 

  
Davies’ method is a systematic way to relate the joint velocities in closed kinematic chains. Davies (Campos et al, 

2005) derived a solution to the differential kinematics of closed kinematic chains from Kirchhoff circulation law for 
electrical circuits. The resulting Kirchhoff-Davies circulation law states that “The algebraic sum of relative velocities of 
kinematic pairs along any closed kinematic chain is zero” (Campos et al, 2005).  

This method is used to obtain the relationship between the velocities of a closed kinematic chain. Since the velocity 
of a link with respect to itself is null, the circulation law can be expressed as 

 

0$
1

=∑
=

n

i
i  (3) 

 
where 0 is a vector of dimension equal to twist $i dimension. 

According to the normalized screw definition introduced above, Eq. (2) may be rewritten as 
 

0$̂
1

=∑
=

n

i
ii q&  (4) 

 

where i$̂  and iq&  correspond respectively to the normalized screw and the magnitude of twist $i.  

×
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Equation (4) is the constraint equation, which can be written as 
 

0=qN &  (5) 

 

where N=[
n$̂...$̂$̂ 21

] is the network matrix containing the normalized screws and [ ]nqqqq &&&& ...21=  is the 

magnitude vector. The normalized screws have their signs dependent on the screw definition in the circuit orientation, 
A closed kinematic chain has actuated joints, here named primary joints, and passive joints, named secondary joints. 

The constraint equation, Eq. (5), allows the calculation of the secondary joint velocities as functions of the primary joint 
velocities. To this end, the constraint equation is partitioned in primary and secondary quantities, resulting in 
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where Np and Ns are the primary and secondary network matrices, respectively, and pq&  and sq&  are the corresponding 

primary and secondary magnitude vectors. 
Equation (6) can be rewritten as 
 

0=+ sspp qNqN &&  (7) 

 
The secondary joint position can be calculated by integrating Eq. (7) as follows: 

 

( ) ( ) dtqNNdtqqtq
t

pps

t

sss ∫∫
−

−==−
0

1

0
0 &&  (8) 

 
2.3. Assur virtual chain 

 
The Assur virtual kinematic chain concept, virtual chain for short, is essentially a tool to obtain information on the 

movement of a kinematic chain or to impose movements on a kinematic chain (Campos et al, 2005). 
This concept was first introduced by Campos et al (2005), which defines the virtual chain as a kinematic chain 

composed of links (virtual links) and joints (virtual joints) which possesses the following three properties: a) the virtual 
chain is open; b) it has joints whose normalized screws are linearly independent; c) it does not change the mobility of 
the real kinematic chain. 

From the c) property, the virtual chain proposed by Campos et al.(2005) is in fact an Assur group, i.e. a kinematic 
subchain with null mobility that when connected to another kinematic chain preserves mobility (Artobolevski, 1977). 

To represent the movements in the Cartesian system the 3P3R virtual chain is used. This chain is composed of three 
orthogonal prismatic joints (in the x, y, and z directions), and a spherical wrist, which can be decomposed in three 
rotational joints (in the x, y, and z directions). Figure 2 shows the 3P3R Assur virtual chain with the virtual links Ci 
labeled. 
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Figure 2. 3P3R Assur virtual chain. 
 

Other Assur groups can be founded in Artobolevski (1977) and in Davidson and Hunt.(2004). 
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2.4. The direct graph notation 
 

Consider a kinematic pair composed of two links Ei and Ei+1. This kinematic pair has its relative velocity defined by 
a screw R$j (joint j) relative to a reference frame R. Joint j represents the relative movement of the link Ei with respect to 
the link Ei+1. This relation can be represented by a graph, as shown Fig. 3(a), where the vertices represent links and the 
arcs represent joints. The relative movement is also indicated by the arcs directions. In Fig. 3(a), for instance, link Ei+1 
moves relative to link Ei via joint j.  

 
 

 
 
 
 

  
 

(a) (b) 
 

Figure 3. (a) Movement of link Ei relative to link Ei+1;  
(b) Relation between joint j and the circuits a and b. 

 
Now consider the following example, where joint j is part of two closed chains. For each closed chain the circuit 

direction is defined (Campos et al, 2005). Figure 3(b) illustrates this case. In a direct mechanism graph, if the joint has 
the same direction as the circuit, the twist associated with the joint has a positive sign in the circuit equation (Eq. (13)), 
and a negative sign if the joint has the opposite direction to the circuit. 

In the example, twist R$j, associated with joint j will have a positive sign in circuit a equation and a negative sign in 
circuit b equation.  
 
2.5. Integration algorithm using Assur virtual chains 
 

Simas (2008) and Simas et al (2009) present a new integration algorithm to obtain joint positions from the 
differential kinematics equation. The algorithm proposed has two steps. The first step is to introduce a virtual chain to 
represent the closure error. The constraint equation of this closed-loop chain results in 

 

0=++ eesspp qNqNqN &&&  (9) 

 

where Np and Ns are the primary and secondary network matrices obtained by integration, pq&  and sq&  are the primary 

and secondary magnitude vectors, Ne is the error network matrix and eq&  is the error magnitude vector. 

The second step is to isolate the secondary magnitude vector to replace Eq. (9) by 
 

eeesppss qKNNqNNq
11 −−

+−= &&  (10) 

 
where the gain matrix Ke is chosen to be positive definite and qe is the position error vector. 

Applying the Euler integration method in Eq. (10) results in 
 

tqtNtNtqtq pkpksksks ∆−= −−

−

−
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The proposed method is stable and allows execution of several iterations until the error is within the admissible 

tolerance (Simas, 2008). To use this proposed method it is necessary to obtain the position error vector. 
 
2.6. Position error vector 

 
Screw displacement of a link in a kinematic chain can be expressed by a homogeneous matrix, and the resultant 

screw displacement in a link j can be calculated using the successive screw displacements method by premultiplying the 
homogeneous matrices corresponding to the preceding joint motions, i.e. 
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As in a closed loop chain, the first and the last links are the same, and the orientation and position of a link with 
respect to itself is an identity matrix. In a closed-loop chain with np primary joints and ns secondary joints, Eq.(12) can 
be rearranged, resulting in 
 

[ ] [ ] IAA
ns

i
is

np

i
ip =∏∏

== 11

 (13) 

 
where [Ap]i, i = 1…np are the homogeneous matrices corresponding to the primary joints and [As]i, i = 1…ns are the 
homogeneous matrices corresponding to the secondary joints.  

We represent the closure error with a homogeneous matrix E, and the closed-loop equation becomes 
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The closure error is calculated by 
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where pe=[ pex pey pez ]

T is the position error vector and Re is the rotation matrix error. The matrix Re corresponds to the 
error measured in rex, rey and rez virtual rotative joints considering their structural conception. 

The “position” error (which is a posture error involving position and orientation) is given by the position error 
vector qe=[ rex rey rez pex pey pez ]

T. 
 
3. DIFFERENTIAL KINEMATICS MODELS 
 
3.1. Eclipse and Eclipse-II kinematic structures 

  
The Eclipse kinematic design consists of three PPRS serial chains (where P, R, and S denote prismatic, revolute, and 

spherical joints, respectively). The first P joint performs sliding motion along the circular guideway. This robot has six 
degrees of freedom, where the prismatic joints are the actuated ones (Park, 2001). The three kinematic subchains are 
connected to a triangular moving plate through S joints. Figure 4 depicts this structure, where a, b, c identify each 
subchain and pcj, pvj, rj, sj denotes the circular prismatic, vertical prismatic, rotative and spherical joints, respectively. 

 
Figure 4.  Eclipse kinematic design. 

 
The Eclipse-II kinematic design is also composed by three PPRS serial subchains, moving independently along a 

fixed circular guide. Differently from the Eclipse robot, one subchain has a circular prismatic chain substituting the 
vertical prismatic joint. This modification results in a large orientation workspace, as can be seen in Figure 5. This 
second circular prismatic joint in one subchain is identified by pha.  
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Figure 5. Eclipse-II kinematic design. 

 
3.2. Differential kinematics modeling 
  

It was observed that Eclipse and Eclipse-II robots have the same graph model, resulting in the same Davies 
equation. The only difference is in the screw definition of the second prismatic joint of one of the subchains, as 
explained in the previous section. To impose movement to the moving plate, an Assur virtual chain were added. There 
were added error virtual chains for each circuit composed of the subchains. Figure 6 shows the resulting graph. 
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Figure 6. Eclipse and Eclipse-II graph 
 
In this figure, Lij denotes i-th link of j subchain. pcj, pvj, rj are the prismatic circular joint, the prismatic vertical joint 

and the revolute joint of j subchain, respectively. In the graph, spherical joints are replaced by three rotative joints rxj, 
ryj, rzj to represent movement in each orthogonal direction. 

From the graph and the joint arrangements, Np and Ns matrices are determined, and the constraint equations for each 
robot configuration are obtained. Equation (16) corresponds to the Eclipse constraint equation. 
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In Eq. (16), each M matrix corresponds to a set of unitary screws. [ ]zjyjxjrjvjcjj $$$$$$M ˆˆˆˆˆˆ=  is related to the 

j subchain, while [ ]rzjryrxpzpypxtj $$$$$$M ˆˆˆˆˆˆ=  is related to the virtual chain that imposes the trajectory of each 

eclipse subchain. Vectors ψj and ψtj are formed by magnitudes of the velocities of each chain. It should be noted that the 
first five screws of the Assur virtual chains that define trajectories are the same for the Eclipse subchains a, b and c, 
while the sixth screw differs in each case, because of the shape of the end-effector plate. Since the model in this work 

considers this plate as equilateral triangular, each rzj$̂ corresponding magnitude has a phase angle of 0o, 120o or -120o 

summed to it. 

Eclipse-II has same constraint equation structured as Eclipse, changing only the screw 
va$̂  for the screw

ha$̂ , 

according to the joint change explained in the previous section. 
 

4. SINGULARITY ANALYSIS  
 

Kim and Park (1998) and Kim et al (2002) discuss the complexity of kinematics in Eclipse and Eclipse-II, 
respectively. Their studies were based on geometric analysis and numerical approaches. Alternatively, the singularity 
conditions for forward and inverse kinematics can be determined from the model presented on the previous section. 
 

4.1 Inverse singularity analysis  
 

In Eq. (16), it can be noted that the secondary matrix is constituted of a set of submatrices disposed along the 
principal diagonal. So, inverse kinematic singularities can be evaluated by calculation of the determinant of the Mj 
submatrix, which has the same structure for each subchain, as shown in Equation (17), where qrj is the angle of the joint 
rj, r is the length of the link which connects vertical prismatic joint pvj and spherical joint sj and rg is the distance from 
the base to the circular guide.  

 

)sin()cos())cos(()( rjyjrjgj qqqrrrMD +−=  (17) 

 
From Eq. (17), it can be observed that singularity conditions occur on the following conditions: 
 

• qrj=0 rad; 

• qyj=π/2 rad; 

• r cos(qrj)=rg. 
 
These conditions are the same for each subchain of Eclipse and for b and c subchains of Eclipe-II. For the a 

subchain of Eclipse-II, the determinant results in 
 

)sin()cos(coscos)( raya

g

a
ra

g

a
gga qq

r

L
qr

r

L
rrrMD




























++














−=  (18) 

 
where La is the displacement of the pha joint. 

According to Eq. (18), the a subchain has the following singularity conditions: 
 

• qra=0 rad; 

• qya=π/2 rad; 
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4.1 Direct singularity analysis  
 

In Eq. (16), it can be observed also that the primary matrix is constituted of submatrices along its main diagonal. 
Direct kinematic singularities can be evaluated by calculating the determinant of the Mti submatrix, which has the same 
structure for each subchain. This determinant is shown in Eq. (19), where qdy is the desired displacement of the ry 
rotative joint of the virtual 3P3R trajectory generator chain. 
 

)cos()( dyti qMD −=  (19) 
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From Eq.(19), singularity occurs when qdy =π/2.This result is applicable for both Eclipse and Eclipse-II. 
The results obtained here can solve both direct and inverse kinematics, by use of the numerical algorithm presented 

in Eq. (16). The next section presents numerical simulations to illustrate the method for Eclipse and  Eclipse-II. 
 

5. EXPERIMENTAL SIMULATION  
 
To perform numerical simulations the following dimensions were adopted: 

• rg=20 cm 

• r=20 cm 

• Equilateral triangular plate with side = 310 cm 

 
The 3-dimensional trajectory was composed of 100 points, and it consisted of an ellipse defined on XY plane 

together with a sinusoidal movement in Z axis. Orientation was maintained constant, according to Eq. (20).  
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where x(t), y(t) and z(t) are parametric functions that defines the displacements to the prismatic joints of the Assur 

virtual trajectory chain, and φx, φy and  φz are the desired angular position to the rotative joints of the Assur virtual 
trajectory chain. 

Trajectory is shown in the Fig. 7. Figure 8 depicts a sequence of eight configurations of the Eclipse robot while the 
end-effector follows the trajectory. 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Programmed trajectory to Eclipse and Eclipse-II 
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Figure 8. Sequence of eight positions of the robot Eclipse following the planned trajectory 
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It should be noted that the end-effector movement is performed by the displacement of the vertical prismatic joints 

and its vertical support columns over the circular guide.  
Figure 9 presents the profiles of prismatic joints position for the circular guide ring and for the vertical columns. 
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(a)    (b) 

Figure 9. Prismatic joint position: (a) circular guide prismatic joint; (b) vertical prismatic joint 
 

The same trajectory was imposed to the end-effector of Eclipse-II robot. Figure 10 presents a sample of eight 
configurations of its kinematic chain, while executing the task imposed to it. 
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Figure 10. Sequence of eight positions of the robot Eclipse-II following the planned trajectory 

 
Similar to Eclipse, the movement of the end-effector is performed by displacement of the three vertical prismatic 

joints (including the vertical prismatic joint with circular guide), and its respective columns movements in relation with 
the circular guide in the base. Figure 11 presents the profiles of prismatic joints position of the circular guide ring and of 
the vertical columns to Eclipse-II. 
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(a)                                                     (b) 

Figure 11. Prismatic joint position to Eclipse-II: (a) circular prismatic joint; 
(b) vertical prismatic joints and circular prismatic joint pha 
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3. CONCLUSION 
 
This paper presented an alternative kinematic differential model for the Eclipse and Eclipse-II parallel robots. The 

model discussed was based on Assur virtual chains, and its development followed a systematic way, which is a 
characteristic of this method. An integration method with closure error control was employed in order to compute the 
joints positions and so, the references for the robots’ actuators. The results originated the implementation of an 
algorithm for trajectory generation concerning inverse and forward singularity condition.  

The method will be applied to other complex robot architectures, like Adept® Quattro, and PKM® Tricept, and the 
results will be presented in future work.  
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