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Abstract. This paper presents an application of the supervisory control theory (SCT), initiated by Ramadge and 

Wohnam in the 80s, to coordinate a flexible manufacturing cell (FMC) controlled by a programmable logic controller 

(PLC). We show how the SCT associated with simulation and automatic code generation can help the control designer 

to shift focus from synthesis and implementation to the modeling stage. In SCT we look for a minimally restrictive 

supervisor that monitors the actions of a real system and disables those operations which would lead to an undesirable 

condition for the system. Such approach offers a formal solution and its results achieve the most flexible control for the 

plant. In this application we used the local modular approach, proposed by Queiroz and Cury in 2000, which consists 

of dividing the mentioned supervisor into further ones to resolve specific problems in the system, thus reducing the 

computational cost to obtain the controller. In the FMC test bed, workpieces coming from an input buffer or a rework 

station are transported by a robotic manipulator and a rotating table through the drilling, welding and quality test 

stations. After testing, workpieces can be approved, reworked or discarded if they are rejected twice. We modeled the 

FMC behavior and its specifications using generators. From these models we synthesized the supervisory control with 

the TCT tool and next we used the emulator DESEM to simulate the execution of the supervisors on the modeled plant. 

This procedure allowed us to perceive the necessary changes to the specifications and plant model. When the 

simulation was working in the expected way we generated a PLC code in structured text for the supervisors using an 

automatic code generator - Ides2ST. In the implementation we applied a three level hierarchy, proposed by Queiroz 

and Cury in 2002, to make the interaction between the modular supervisors and the real system. Simulation made 

possible the debugging of the supervisor in the modeling stage, thus the errors detected during the implementation 

were restricted to the cell’s operational sequences. The automatic code generation reduced the implementation time of 

the supervisor code in PLC and transformed the supervisor implementing problems into modeling ones. 
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1. INTRODUCTION 

 

Automated manufacturing systems are supported by supervisory control systems which are responsible for the 

monitoring and proper execution of the production line. They determine what actions should be avoided by the cell in 

order to keep the safety and sequencing of the system. The Supervisory Control Theory (SCT) (Ramadge and Wonham, 

1989) offers a formal approach based on controlled automata to generate a monolithic supervisor to rule the system 

according to a map of control law. Summarily, the development of a supervisory controller considers a global map of 

possible physical actions to be taken by the real system – open loop behavior – and, according to desired behavioral 

specifications, excludes those sequences that stand against the wanted control logic. This approach achieves the most 

flexible control for the plant since it allows the happening of all actions that don’t oppose the specified behavior. 

When dealing with complex problems, the supervisory controller development faces high computational costs and 

sometimes can’t calculate the optimal supervisor. This occurs because the states number of the global system model 

increases exponentially with the number of subsystems. Furthermore, if the supervisor was calculable, its 

implementation would be unfeasible since the PLC memory wouldn’t support such a complex supervisor and the 

available minimization algorithms (Su and Wonham, 2004), (Vaz and Wonham, 1986) would demand high 

computational costs as well. 

The local modular expansion of the SCT (Queiroz and Cury, 2000) proposes the development of several supervisors, 

every one responsible for a behavioral specification, that together co-operate for the entire system monitoring and 

control. This approach, instead of finding the supervisor based on a global composite system, specifies various local 

plants. Each of them is a composite system of the subsystems affected by the local constraints.  The computational 

complexity of the supervisors synthesis process is reduced and their limited size makes possible the supervisors 

reduction. 

In this paper we exemplify the SCT local modular approach application in the development of a controller for a 

flexible manufacturing cell test bed. Further we explain the implementation of the supervisors set in a PLC according to 

a hierarchical structure (Queiroz, 2004) that maintains the SCT original characteristics.  Contrasted to the previous work 

(Queiroz and Cury, 2002), our proposal brings the support of a simulation tool linked to the modeling stage and the 

assistance of an automatic code generator (Klinge, 2007) in the implementation stage. They both add reliance and 

agility to the controller development and implementation. 
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This paper is organized as follows. In Section 2 we describe the physical characteristics of the FMC and the 

behavioral specifications we want the cell to assume. We introduce in Section 3 some theoretical concepts of the SCT 

and expose the system modeling and controller synthesis. Next, in Section 4, we comment the role of simulation in the 

work, present the hierarchical structure of implementation and describe how the automatic code generator works.  

 

2. THE FMC 

 

 
 

Figure 1. Flexible Manufacturing Cell test bed schematic diagram 

 

The FMC test bed, Fig. 1, is composed of four operational stations that are linked by a rotating table and a grabber. 

These stations perform the drilling, welding, quality test and rework of workpieces. The FMC main goal is to drill and 

weld raw workpieces that come from an input buffer. Naturally, as in a real industry, workpieces sometimes are not 

manufactured correctly at first and they need to be refurbished. Therefore the FMC rework station is an input for 

manually restored workpieces. Three different workpieces storages are available in the system. The drilling, welding 

and test stations don’t have any sensor to identify the arrival of a workpiece at their stations. 

It’s possible to implement a wide range of control laws to the FMC depending on how the designer wants it to 

behave. It could be desired, for example, a manufacturing sequence that allowed the use of a unique slot of the table. 

Since we want the cell to be as efficient as possible (regarding to the utilization of resources), provided that it respects 

the security restrictions, we adopted a manufacturing pattern that enables the FMC to use all table slots simultaneously. 

Given that the FMC main stations don’t hold any workpieces arrival sensor, the proposed control must identify the 

workpieces position by the events history. In the next three paragraphs we explain the behavior proposed for the FMC 

and how it should act under certain conditions. 

When a rough workpiece arrives at the input buffer the grabber drops it on the table in the position S1 since this slot 

is not being occupied by any other workpiece. The rotating table will conduct the raw workpiece to the drilling, welding 

and quality test stations and finally will return to the table initial position.   

Whenever a workpiece arrives at the rework station the grabber will put it upon the table and the latter will make it 

reach the quality test station, and later the position S1, so that the drilling and welding processes will not be activated 

while the remanufactured workpiece is in the position S2 or S3.  

Reaching the position S1 for the second time, the grabber takes the workpiece off the table. The quality test will 

determine the place where the grabber must put the workpieces. The ones manufactured properly are dropped at the 

“good” storage, no matter what input they came from. If those arisen from the input buffer are rejected, they are taken 

to the “damaged” storage in order to be reworked manually. Finally, the workpieces must be discarded if they are 

rejected when coming from the rework station because they failed the test twice, so they are put into the “bad” storage. 

In order to obtain the described behavior for the FMC we have to pay attention to some problems that might happen 

when manufacturing several pieces at the same time. The table cannot turn if it’s empty, while any of the stations is 

performing a task or in case the workpieces on the table haven’t been drilled, welded – or skipped both actions –, tested 

or removed by the grabber. We still have to prevent the system from drilling, welding, testing and grabbing if there’s no 

workpiece waiting to be served at that slot. Also the FMC can’t carry out two tasks on the same workpiece and those 

ones coming from the rework station can’t be drilled and welded. 

 

3. SYNTHESIS OF SUPERVISORS 

 

This stage counted on the support of IDES (Rudie, 2006) for the graphical modeling of the FMC subsystems and 

specifications, and TCT (Feng and Wonham, 2006) for the synthesis of supervisory controls.  
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3.1. Subsystems and specifications modeling 

  

The modeling of discrete event systems (DES), in accord with (Ramadge and Wonham, 2008), is made by means of 

generators. A generator, which is an automaton, represents a DES specified by a regular language.  It is a 5-tuple of 

form G = (Σ, Q, δ, q0, Qm). In this sense, Σ is the events set, Q is the states set, q0 ∈ Q  is the initial state, Qm ⊆ Q is the 

subset of marker states and δ:Σ×Q → Q is the partial transition function defined in each state of Q for a subset of  Σ.  

For control purpose the discrete events (σ∈Σ) are disjointed in two subsets Σ = Σc U Σu. The controllable events (σ∈Σc) 

may be enabled or disabled by an external agent and the opposite applies to the uncontrollable events (σ∈Σu). The DES 

generator recognizes the closed behavior and marked behavior languages. The closed behavior language, L(G), 

represents all possible event sequences in the generator starting from the initial state. The marked behavior language, 

Lm(G), indicates all those sequences that reach a marked state starting from the initial state, meaning a task-completion 

language.  

The generators proposed for the FMC are graphically visualized by state transition graphs. The graph vertices 

symbolize the generator states and the arcs, associated with the partial transition functions, represent the events. The 

initial state has an arrow pointing at it and the marker states are drawn as a double circle. Controllable events are 

indicated by a tick on their transitions arcs.  

The modeling stage begins with the identification of the subsystems comprised by the FMC. Each subsystem 

generator is modeled separately using IDES, as shown in Fig. 2. The control problems of the FMC, referred in Section 

2, relate to situations that might occur during the interaction of the subsystems and getting an abstract model wouldn’t 

interfere in the controller performance. Therefore, the subsystems models basically involve the beginning and ending of 

operations.  

 

 
 

Figure 2. Generators for the FMC subsystems 

 

The input buffer and rework station have sensors that signalize the arrival of workpieces through events sen_ib and 

sen_rw respectively. The table starts turning by the command st_turn and when it finalizes the signal fi_turn is sent. The 

drilling and welding station work similarly to the table, except for the possibility of skipping their process for 

workpieces arisen from the rework station by the events sk_drill and sk_weld. A different model was proposed for the 

test to warn the system how many times a workpiece has been rejected. So the test station performs, logically, two 

different tests. Test1 is applied to workpieces coming from the input buffer and has as response an approval, fi_ok, or 

the first rejection, fi_nok1. Test2 is for those workpieces arriving from the rework station and its result indicates an  ap- 
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Figure 3. Behavioral specifications for the FMC 
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approval or the second rejection, fi_nok2. The grabber executes five different actions. It can grab workpieces from the 

input buffer, st_grabib, or the rework station, st_grabrw and place the workpieces into the three different storages – 

st_putgood, st_putbad and st_putdmgd. 

Since we’ve got the FMC subsystem abstract models we need to define the FMC behavior, which is expressed, in 

Figure 3, through a set of generators as well. So for each one of the problems that might happen to the FMC, 

described in Section 2, we model a specification with IDES. The specifications affect the plants – a composite of 

subsystems in open loop – by excluding those undesirable sequences of actions.  

Our first specification, E1, concerns about not allowing the table to turn if there’s no workpiece on its slots. We do 

this by enabling the st_turn command only after the completion of actions that guarantee us at least one workpiece 

remains on the table – after the grabber puts a workpiece on the table from any of the inputs, after performing or 

skipping the drilling or welding and after testing. Notice that E1 contains a self-loop in state 2. This means the enabling 

of the previously mentioned actions more than once and so the possibility of executing these tasks concurrently. 

 To deal with the mutual exclusion that must exist between the table and the stations, we modeled four generators, 

E2a, E2b, E2c and E2d. By them we state that once the table is rotating, there must be no task execution by the 

respective station until a fi_turn is signalized and vice versa. 

Specifications E3a, E3b, E3c and E3d take care of the synchronization between the stations. We separate this 

problem in four generators and each one focus on solving the coordination of two sequential stations. The generators 

states are referred by two numbers that indicates the presence of a workpiece in that slot, when different of 0, and a 

quality for the workpiece, numbers 1, 2 and 3. In specifications E3a, E3b and E3c, number 1 symbolizes workpieces 

coming from the input buffer and number 2 designates refurbished ones. The test can result in three responses and 

specification E3d states numbers 1, 2 and 3 represent an approval, a first rejection and a second rejection respectively.    

The previous_tasks in specifications E3a, E3b and E3c are those the second station is waiting to be performed by the 

first station in the ordinary manufacturing process and the next_tasks those the second station should execute. The same 

applies to the previous_rw_tasks and next_rw_task except they regard to the refurbished workpieces manufacturing 

cycle. For instance, previous_task in E3a is fi_grabib, next_task is st_drill, previous_rw_task is fi_grabrw and 

next_rw_task is st_drill. Specification E3b coordinates the drilling and welding stations and E3c the welding and test 

stations. 

Specification E3d, which is responsible for the interaction of the test and grabber stations, follows the same design 

pattern presented for E3a, E3b and E3c, however it differs in size. This happens because the test station offers three 

possibilities of response – fi_ok, fi_nok1 and fi_nok2 – whilst the previously mentioned models two – raw and 

refurbished workpieces manufacturing cycle. 

These four specifications assure there will be no overflow of workpieces in slot S1; the table rotation before a 

workpiece is drilled, welded or tested; the welding and drilling of refurbished workpieces; the drilling, welding, testing 

and grabbing if there’s no workpiece at the respective station; the double drilling, welding or testing of the same 

workpiece. In addition they signalize the grabber where to put the forthcoming workpieces. 

We can’t predict when workpieces will arrive from both inputs, however we establish by our last specifications, E4a 

and E4b, the grabber must take them only after the inputs sensors have been activated. The self-loop in state 2 enable 

the sensors activation at any instant of the manufacturing process. 

In local modular approach, a specification restricts the actions of a local plant which is composed by all the 

subsystems that share at least one event with this specification. In specification E3d, for example, the local plant is the 

composition of the table, test and grabber subsystems since they share at least one event with E3d. The FMC local 

plants are described as follows and the operator || symbolizes the generators synchronous composition. Gloc1 = G3 || G4 || 

G5 || G6 || G7, Gloc2a = G3 || G4, Gloc2b = G3 || G5, Gloc2c = G3 || G6, Gloc2d = G3 || G7, Gloc3a = G3 || G4 || G7, Gloc3b = G3 || G4 || 

G5, Gloc3c = G3 || G5 || G6, Gloc3d = G3 || G6 || G7, Gloc4a = G1 || G7, Gloc1 = G2 || G7. 

Each local plant behaves according to what is imposed by its respective specification. This language, which 

represents a local specification, is determined by the synchronous composition of the local plant and the specification 

that produced the former. So in this work we have, for x ∈ {1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, 4a, 4b}, the local 

specifications Elocx = Glocx || Ex, with the number of states shown in Tab. 1.  

 

3.2. Synthesis of local modular supervisors 

 

Once the modular specifications and respective local plants have been modeled, the set of optimal supervisors is 

computationally achieved with the TCT tool. In the synthesis, we want to find a set of supervisors to control every one 

of the local plants Glocx – closed loop behavior. These supervisors are represented by generators Sx which disable, 

according to the control actions defined for their states, certain events in the local plants. The completion of tasks of 

Glocx under supervision of Sx happens when both generators reach a marked state.   

Generically, a supervisor S is nonblocking if Lm(S/G)
______

 = L(S/G), where L
_

 represents the prefix closure of a language 

L. This means that every state in the supervisor that can be reached from the initial state permits a chain of events that 

leads to marker states.  The necessary and sufficient condition for the existence of a nonblocking supervisor S that 
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satisfies a given specification K ⊆ Lm(G) (Lm(S/G) = K) is the controllability of K. K is said to be controllable if K
_

Σu ∩ L(G) ⊆ K
_
. The class of controllable languages contained in K has a supremal element SupC(K, G). 

So, in the local modular approach we compute, for x=1,…,m, the nonblocking supervisors Slocx directly on their 

respective local specifications Elocx so that Lm(Slocx/Glocx) = SupC(Elocx, Glocx). The local modularity – a sufficient and 

necessary non-conflict test – is verified by checking if the synchronous composition of all local supervisors is reachable 

and coreachable.  

We obtained for the FMC 11 local supervisors Slocx, x ∈ {1, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, 4a, 4b} through the 

SupC(Elocx, Glocx) procedure. The supervisors were verified as non-conflicting after checking the generator S = Sloc1 || 

Sloc2a || Sloc2b || Sloc2c || Sloc2d || Sloc3a || Sloc3b || Sloc3c || Sloc3d || Sloc4a || Sloc4b (19180 states) is trim (reachable and coreachable). 

This indicates the set of supervisors has the same control attitude a monolithic supervisor would. The synthesis 

computations took less than one second and were processed in a personal computer (AMD Turion™ 64 X2 Dual-Core 

1.9 GHz, 2048 MB RAM, Windows Vista® Home Premium 32-bit version). 

 

3.3. Supervisors reduction 

 

Some of the computed local supervisors are described through a wide map of control sequences which involved a 

large number of states. Besides the lack of understandability, to implement such complex supervisors is not possible due 

to the huge amount of memory they require from the system. The simulation tool described in next section and used in 

this work is only functional for size-limited supervisors as well. As a solution for this problem we reduced (Su and 

Wonham, 2004) the supervisors using TCT and as result we obtained smaller supervisors RSlocx which represented 

memory economy and a more elucidated control map. The computation time for the reduction ranged between less than 

1s and 2s, with exception of the worst case that took around 13 hours to be processed. All of them were made with the 

previously described computer. The reduced supervisors are similar to the original specification models and then 

comprehensible. The numbers of states for each generator involved in the controller synthesis are seen in Tab. 1.   

 

Table 1. Number of states of generators in supervisors synthesis 

 

x Ex Glocx Elocx Slocx RSlocx 

1  2  324  648  648  2  

2a, 2b, 2c  2  6  4  4  2  

2d  2  12  7  7  2  

3a  9  36  324  252  9  

3b, 3c  9  18  162  90  9  

3d  16  36  576  288  16  

4a, 4b  2  6  12  12  2 

 

4. SIMULATION AND IMPLEMENTATION 

 

4.1. Simulation 

 

During this work we used a simulation tool before applying the generated supervisors to the physical system. The 

main purpose was to avoid the confusion caused by the late change of design patterns. Thus the emulator helped us to 

visualize the proposed logic and to make the necessary changes to the project beforehand.  

DESEM is a discrete event system emulator developed by Universidade Federal de Santa Catarina that makes 

possible the simulation of the generated supervisors on the plant. With this tool we can follow the actions taken by the 

supervisor progressively and so we are able to identify whether the model is working as proposed by the control 

designer. We could check, for example, if an event that should be enabled at certain circumstance is not being forbidden 

from happening.  

The simulation in DESEM is made by adding blocks which represent each part of the physical system. The blocks 

are loaded with their respective automata. Naturally, if no supervisor is keeping track of the plant the system can 

perform any event randomly. By adding supervisors to DESEM, the plant respects the constraints imposed by them.   

The simulation works as a feedback for the supervisory control synthesis. When any odd behavior is detected, the 

designer has to think of a different specification model to satisfy the system logic. The modeling and simulation stages 

are overcome only when the response of the simulation works as wanted. Thus the modeling demands the greatest effort 

from the designer since all the supervisors problems are solved at this phase. 

The use of simulation anticipates the test of the proposed supervisors and excludes the need of the cell subroutines 

in advance. So, a possible delay on the subroutines development doesn’t interfere in the supervisors design process 

because the feedback provided by DESEM is enough to correct the mistakes. The independence between the 

development of the supervisors and subroutines suggests a time economy to reach the final controller if they both are 

made by different group of designers. 
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In this work, we had to review some specification models related to the refurbished workpieces manufacturing cycle 

that made the FMC simulation in DESEM diverge from the expected one. 

 

4.2. Hierarchical structure 

  

The SCT supervisors when applied on a plant represented by a set of generators act disabling events that are 

physically possible to be executed by the plant but cannot happen at that specific state. The theory implies that events 

are happening spontaneously and the supervisors block controllable events temporarily until the plant reaches a 

different state where that event can occur.  

However, the operational sequences of our physical system aren’t triggered automatically and the events of a plant, 

controllable or not, must be associated with their proper operational sequence inasmuch as they don’t represent a direct 

input and output of the PLC. To implement the synthesized supervisors to the PLC and make them work as suggested 

by the SCT we applied a three level hierarchy so that there’s an interface (Queiroz and Cury, 2002) between the 

modular supervisors and the real system. 

As seen in Fig. 3, the modular supervisors are at the top of the hierarchy. The subsequent level contains the product-

system that represents the abstract model of the local plants. Finally at the bottom level there are the operational 

sequences that act on the physical system. The supervisor receives from the local plant the indication of events 

occurrence and updates the list of controllable events that must be disabled. The product-system is informed by the 

supervisor of the events that are forbidden to happen at that state and sends commands to execute subroutines that are 

not disabled. Every time the plant sends a command to the operational sequences or gets a response from them the 

supervisors must be updated. The operational sequences activate the output signals and read the input signals from the 

real system, besides sending responses to the product-system. 

 

 
  

Figure 4. Hierarchical structure of implementation 

 

4.3. Automatic code generation 

  
Once the supervisor simulation has been approved, we used an automatic code generation tool, called Ides2St, to 

obtain a structured text (ST) code. This tool translates files designed through IDES. If the supervisory control was 

synthesized using a software other than IDES, such as Grail (Reiser, Cunha and Cury, 2006) or TCT, the files can be 

imported to IDES and then converted into ST. The Ides2St translation is founded on the implementation hierarchy 

previously described and in order to generate the code Ides2St requires as input the local plants and supervisors 

automata. 

Ides2St assigns a memory variable of the PLC to every state of the finite state machines (FSM) representing the 

generators and the events. During the initialization of the program all the supervisors and local plants are set to their 

initial states as in Fig. 5(a). This should not be confused with the physical system startup which is adjusted before 

entering the logic control procedure. It uses the auxiliary variable ilc_inited to guarantee the logical startup runs once, 

for the reason that a PLC program is scanned sequentially. 

According to Ides2St, when an event takes place its variable is set to 1 and remains like this until the supervisor is 

updated. To avoid the undesirable situation of computing two subsequent transitions without updating the supervisors, 

Ides2St uses an auxiliary variable called evt_blk. It doesn’t mean that those subsequent events will be ignored by the 

program, but postponed. Their variables are set to 1 but they just run in a convenient state at the supervisors. 

The program code related to the supervisor level is divided in two parts. The first one, Fig. 5(b), specifies the 

supervisors as FSMs. It describes them according to the current state and the event transition that leads to the next state. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

 

Each supervisor is composed by a group of IFs instructions that set the bit of the current state to 0 and the target to 1 

when a transition happens. The second part, Fig. 5(c), refers to the disenabling of events which is done by setting on a 

variable named De_<event>. The De_<event> is set to 1 when the variables of the supervisors’ states which disable that 

event are on as well. In other words, the supervisor prevents an event from happening at a certain state if De_<event> is 

on. 

 

 
 

Figure 5. Example of Ides2St implementation code structure 

 

The product-system is also implemented as FSMs, similar to supervisor, and its code is divided in two parts. The 

uncontrollable events code, Fig. 5(d), is implemented apart from the controllable one, Fig. 5(e), and the former must 

precede the latter in consequence of its unpredictability. Thus before any controllable event can be triggered the code 

will check if there is any uncontrollable event’s bit set. If so, the local plant FSM is updated and sets the response event 
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variable e_<event> to update the supervisor. Were it not, and the local plant is in a state where a controllable event is 

not disabled, the variable e_<event> bit is set which means a command is sent to start a subroutine and to update the 

supervisor after this local plant does. 

At the operational sequences level, Ides2St deals with the commands and responses forwarding and lets their 

memory address blank to be associated with the designer’s subroutine start and ending. When a subroutine ends it sets 

the bit of the variable Ae_<event>. The subroutines that command the internal behavior of each subsystem were 

manually developed in Ladder and their explanation deviates from the scope of this work. 

 

5. CONCLUSIONS 

 
Certainly the implementation of the presented FMC problem by traditional methods of programming would cause 

confusion to the developer due to the wide range of tasks assigned to the test bed and this problem would normally be 

simplified by a restrictive solution, such as the manufacturing of one workpiece per cycle. The modularity test of the 

local supervisors showed us how complex the FMC problem is. If we tried to implement the monolithic solution, whose 

supervisor has 19180 states, we wouldn’t succeed in reducing it since the computational cost demanded by the 

minimization algorithm is too high for such amount of states. 

Applying the local modular approach in this work we focused on resolving local problems of the FMC described by 

each specification. Thus we obtained a group of smaller supervisors, that are equivalent to the monolithic supervisor, 

and we could minimize and implement them. 

The simulation and the remodeling, until we could reach the desirable supervisors set, assured us that any 

malfunctioning in the FMC would not be related to the supervisors’ model. In addition, since we used an automatic 

code generator, besides saving time, we avoided mistyping errors that might happen during the code’s manual 

implementation. Therefore the supervisors code responsibility is excluded for any odd behavior performed by the FMC 

and it’s passed on to the subroutines, mechanical and electrical systems.  

At last, the approach taken in this work allowed the controller to be modeled concurrently and independently to the 

subroutines, seen that the simulation tool discarded the need of the subroutines to check the wanted behavior. 
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