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Abstract.The presence of notches and other stress concentration in turbine blades and other notch hydraulic 

components is a current problem in engineering. It causes a reduction of endurance limit of material. In that sense, 

specimens of the ASTM A743 CA6NM alloy steel using in several hydrogenator turbine components was tested. The 

specimens were tested under uniaxial fatigue loading with a load ratio equal to -1, and the considered stress 

concentratio factors,Kt, values, calculated with respect to net area, were 1.55, 2.04 and 2.42. In order to determine the 

fatigue limit for such notch type, a reduction data method by Dixon and Mood, Staircase method was used. This 

approach is based on the assumed target distribution of the fatigue limit. For such geometry at least 8 specimens were 

tested. In addition, the Peterson and Neuber’s notch fatigue factor were compared through fatigue notch reduction 

factor, Kf, obtained from experimental data. According to results obtained it was possible to conclude that the tested 

material is less sensitive to notches than the prediction of the Peterson and Neuber’s empirical models. 
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1. INTRODUCTION 
 

The fatigue analysis in turbine blades and other hydraulic notch components is a very important problem because 

these components are designed to operate below its endurance limit and because fatigue failures in service invariably 

occur at stress concentrations. In the cases that the loading is dynamic, the ductile materials behave as brittle materials 

due to the fatigue. Therefore, the stress concentration factor should be modified according to material sensitivity to 

geometric discontinuities. In that sense, appears the fatigue notch reduction factor, Kf. It establishes an important 

transformation factor that relates the fatigue strength of notch specimen, Sf, with the fatigue strength of unnotched 

specimen, Sfe. This relation can be expressed by Eq. (1), where q is the notch sensibility factor and 0 1q≤ ≤ . However, 

the most definition accepts is the relation showed by Eq. (2). Experimental investigations indicate that the Kf value is 

practically unaffected for 10
6
 to 10

8
 cycles. In addition, when the fatigue life is less that 10

6
 cycles, the Kf value 

decrease quickly with respect the cycle number (Buch, 1988). 
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In the last 40 years many expressions have been developed to the notch fatigue notch reduction factor, Kf. According 

to its consideration, they cab classified in three models: (i) Average stress models, (ii) Fracture mechanic models and 

(iii) Stress field intensity models (Yao et al., 1994). In this work, we work only average stress models: Neuber and 

Peterson’s relation. The first model shows by Kuhn and Hardraht (1952) became base for average stress models. This 

model assumes the fatigue failure occur when the average stress about characteristic length from root notch equals the 

endurance limit of a smooth specimen Sf. The Eq. (3) presents an obtained expression by Kuhn and Hardraht, where ρ is 

root notch radius, w is notch opening angle, and A is a material constant that is a function of the tensile strength. 

 

1
1

1

t

f

K
K

A

w

π

π ρ

−
= +

+
−

 
(3) 

 

Neuber (1961) formulated the Eq. (3) as the Eq. (4), where ( )
rtP

a f σ= is a constant material that can be quantified 

in function of tensile strength, Srt, for steels with Srt > 550 MPa, according to Eq. (5) 
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Peterson (1959) assumed that the fatigue failure occur when the stress at distance d0 from root notch is equal or 

more than limit fatigue strength of a smooth specimen. Obviously, the Peterson’s model is a particular case of average 

stress model. However, Peterson proposed that the stress near to notch decrease linearly. The Eq. (6) express this 

relation, where aN is a constant material and it can be estimate in function of tensile strength according to Eq. (7). 
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2. EXPERIMENTAL PROCEDURE 
 

2.1. Material  

 
The test material was a steel alloy, ASTM A743 CA6NM, which has been used in the fabrication of hydraulic 

turbine components and it requests high mechanical strength and that it resist the corrosion. Its chemical properties 

according to ASTM A 743/A 743M (2006) are showed in Tab. (1). The mechanical (Young modulus, E, tensile 

strength, Srt, and yield strength, Sy.) and fatigue properties based on Parallel-projected method according to and DaSilva 

et al. (2009a) are showed in Tab. (2) and Tab. (3), respectively. 

 

Table 1. Chemical properties of ASTM A743 CA6NM alloy steel (ASTM A 743/A 743M, 2006) 

 

Composition (%) 

C Mn Si Cr Ni Mo P S 

≤ 0.06 ≤ 1.00 ≤ 1.00 11.5-14 3.5–4.5 0.4–1.0 ≤ 0.04 ≤ 0.03 

 

Table2. Mechanical properties of ASTM A743 CA6NM alloy steel 

 

E (GPa)  Sy (MPa) Srt (MPa) Hardness (HB) 

198 ± 4  575 ± 35 918 ± 1 273.0 ± 7.0 

 

Table 3. Basquin’s fatigue parameter obtained of Parallel-projected method 

 

Parameter 
Estimate value Confidence intervals 

Estimate Deviation  Lower Upper 

A 1659.1 116.4 1416.3 1901.9 

b -0.108 0.006 -0.120 -0.097 
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According to Parallel-projected method for fatigue life of 2.10
6
 cycles, the endurance limit is 344.00 24.13± MPa 

(DaSilva et al., 2009a). However, DaSilva et al. (2009b) predict 360.1 14.0± MPa according to Staircase method. 

Therefore, this is the fatigue limit used in this work. The specimens were produced in accordance with ASTM E 466-96 

(ASTM, 2002) and forged into flat plates as shows the Fig. (1) and its geometric parameters are shown in Tab. (4). In 

addition, Tab. (4) presents the analytic stress concentration factor calculated by Eq. (8), (Young and Budynas, 2002). 
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Figure 1. Flat plate specimen 

 

Table 4. Specimen geometric data 

 

Kt a (mm) b (mm) c (mm) d (mm) e (mm) Net area (mm2) 

2.42 3.00 80.00 30.00 7.50 160.00 105.00 

2.04 5.00 80.00 30.00 7.50 160.00 150.00 

1.55 8.00 80.00 30.00 7.50 160.00 180.00 

 

2.2. Staircase method 

 

The Staircase method has been recommended by many standards (British Standard Institution, 1966; Japanese 

Society of Mechanical Engineers, 1981, L’association Francaise de Normalisation, 1991) to evaluate the fatigue limit 

statistical properties. Historically, its origin is associated to biological assay. Biological assay is a set of techniques used 

in comparison of alternative but similar biological stimuli. In other words, it is basically the measurement of the 

potency of any stimulus by observing the reaction that is produces in a living organism (Finney, 1971). In both cases, 

one want to determine the level stimulus, stress or dose, for that an acceptable proportion of specimens survives. 

Two methods of data reduction for statistical properties of fatigue strength at a specific fatigue life are most used: 

Dixon-Mood (1948) and Zhang-Kececioglu (1998). Both approaches are based on maximum likelihood estimation and 

assume target distribution of the fatigue limit, Normal and Weibull, respectively. According to Lin et al. (2001), the 

Dixon-Mood method (DM) provides better and more conservative predictions than Zhang-Kececioglu method (ZK). 

Therefore it will be used in this work. 

The DM method was popularized by Little (1975). It uses a simple systematic methodology where the specimen is 

tested at initial stress for a specific fatigue life. Initially, the fatigue limit and its standard deviation are estimate, for 

example, through of Parallel-projected or S-N curve. If the specimen fails before to infinite life (say 2.106 cycles), the 

next specimen will be tested at a lower stress level. Otherwise, a new test will be conducted at upper stress level. In that 

way, each test depends on the previous test results and the experiment continues in this manner in sequence with the 

stress level being increased or decreased (Lin et al., 2001).The stress increments are usually constant and are in the 

range of half to twice the standard deviation of the fatigue limit. Lee et al. (2005) recommends a value 5% less than 

fatigue limit initially estimated. Collin (1993) recommends running the test at least 15 specimens. 

 

2.3. Statistical analysis 
 

The DM method provides approximate formulas to calculate the mean, DMµ , and standard deviation, DMσ ,of the 

fatigue limit. It requires that the two statistical properties be determined by using the data of the less frequent event, 

either only the survivals or only the failures.  
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The stress levels S spaced equally with a chosen increment d are numbered i where i=0 for the lowest stress level S0. 

The equations proposed by Dixon and Mood (1948) respect three assumptions: (i) the fatigue strength should be 

normally distributed; (ii) the sample size should be big, around 40 to 50 specimens or more and (iii) the standard 

deviation of normal distribution should be grossly estimated previously in order to specify the step of stress increments. 

However, Brownlee et al. (1953) assures that the samples from 5 to 10 specimens are reliable to determine the mean 

fatigue limit. 

Denoting by ni the number of the less frequent event at the stress level i, two quantities can be calculated: A and B, 

Eqs. (8) and (9), respectively. 

 

i i
A in=∑  (8) 

 
2

i i
B i n=∑  (9) 

 

The Equation (10) shows the estimate of the mean, where the plus sign is used if the more frequent event is survival 

and otherwise, it is used minus sign. The Eqs. (11) and (12) show the estimate of standard deviation. 
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The Staircase methods are notably accurate and efficient in terms to quantify the mean fatigue strength but very 

difficult to predict estimate accurate of fatigue limit standard deviation using these methods with small samples at high 

cycle fatigue (Pollak et al., 2006). This method concentrates the most experimental points near the mean therefore is 

more difficult to obtain an accurate standard deviation. Braam and van der Zwaag (1998), Svensson e de Maré (1999), 

Lin et al. (2001) e Rabb (2003) worked in order to evaluate and to improve the reliability of standard deviation and 

proposed a linear correction factor and found to be an improvement in all maximum-likelihood evaluation procedures.  

The Eq. (13) shows the estimate of standard deviation corrected by Svensson-Lóren, SLσ , where DMσ is the standard 

deviation by Dixon-Mood and N is the total specimen number. This correction is a strictly function of sample size and 

tend increase the deviation estimate by Dixon-Mood. 
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A modified correction was developed which attempted to allow a greater range of unbiased estimation than the 

Svensson-Lóren correction. The form of the proposed standard deviation estimate, PCσ , is shown in Eq. (14), where A, 

B, and m are constants dependent on the number of samples, see Tab. (5). 
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In this work the largest deviation will be used, SLσ or PCσ . 
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Table 5. Constants used in proposed standard deviation correction (Pollak et al., 2006) 

 

Specimens # (N) A B m 

8 1.30 1.2 1.72 

10 1.08 1.2 1.10 

12 1.04 1.2 0.78 

15 0.97 1.2 0.55 

20 1.00 1.2 0.45 

 

2.4. Fatigue testing 
 

In order to determine experimentally the fatigue limit of notched materials for 2.106 cycles, all testing was 

performed at a stress ratio, R, of -1 at a frequency of 15 Hz with a universal servo-hydraulic MTS machine. The Tab. 

(6) shows the standard deviation number used to determine the class of Staircase method; the quantity of class used, S; 

the step size, d; the percentile between step size and material endurance limit for 2.10
6
 cycles. In addition, the upper and 

lower staircase limit intervals are presented too in the same table. It can be observed from Tab. (6) that the stress 

increments are less than 5% of fatigue limit initially estimated by Staircase method in DaSilva et al., (2009b) as Lee et 

al., (2005) recommends. 

 

Table (6). Experimental parameters of Staircase method 

 

Notch radius (mm) Deviation Class d (mm) 
f

d σ (%) Upper lim. (MPa) Lower lim. (MPa) 

3 1.6 10 3.99 1.1 190.2 154.3 

51 1.6 10 5.47 1.5 223.0 173.8 

52 2.2 10 1.82 0.5 228.5 212.1 

8 1.6 10 11.18 3.0 303.2 202.6 
1 
fist testing stage and 

2 
second testing stage 

 

3. RESULTS AND DISCUSSION 

 

3.1. Endurance limit for notch radius of  8 mm 
 

Three experimental geometric conditions were tested in this study and the results are shown in Tab. (9). Figure (2) 

plots the Staircase testing results for notch radius of 8 mm. The fatigue limit for this case is 355.1 19.1± MPa.  
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Figure 2. Plot of Staircase testing results for notch radius of 8 mm for 2.10

6
 cycles 

 

3.2. Endurance limit for notch radius of  3 mm 

 

Figure (3) plots the Staircase testing results for notch radius of 3 mm. The average fatigue limit and its scatter 

determined by Dixon-Mood and Svensson-Lóren equations, respectively, for this case are 184.2 2.6± MPa. In order to 

reduce experimental time, the tests started from at bigger class. It can be observed that this class corresponds 1.6 
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standard deviation above average fatigue strength estimate, the probability of experimental limit fatigue is under is more 

than 89% for a normal distribution. In addition, from second specimen to eighth specimen the experimental behavior is 

regular and constant. It can be verified that experimental results for the specimens from 1 to 5 is statiscally similar to 

results obtained with specimens 6 to 10. Therefore, in this case five specimens were sufficiently to determine the 

average fatigue limit but with less accuracy in the standard deviation. 
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Figure 3. Plot of Staircase testing results for notch radius of 3 mm 

 

3.3. Endurance limit for notch radius of  5 mm 
 

Starting from the obtained results previously the Staircase method for notch radius was executed at two stages. 

Firstly, five specimens were used and the endurance limit determined was 220.3 3.6± MPa. Figure (4) shows the testing 

results. Following, the result was refined and more five specimens were tested as it can be seen in Fig. (5). The fatigue 

limit take account second stage is 214.6 1.2± MPa. 
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Figure 4. Plot of Staircase testing results for notch radius of 5 mm (stage 1) 

 

The results obtained in second stage presented a reduction at average endurance limit because the refinement in the 

stress increment of the Staircase method. The standard deviation decreased three times in relation to first stage. The 

decreased of step size is responsible for this fact. 

 

3.4. Notch strength and notch fatigue reduction strength. Kf.  behavior 

 

According to obtained results starting from experimental data and shown in Tab. (6) and Fig. (5) we can to observe 

a decrease in endurance limit when notch radius decrease for ASTM A743 CA6NM alloy steel. 
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Figure 5. Plot of Staircase testing results for notch radius of 5 mm (stage 2) 
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Figure 5. Comparison between endurance limits of notched specimens 

 

Table 6. Endurance limit for each notch based on Staircase method 

 

Notch radius (mm) 
Endurance limit. Sfe (MPa) 

Mean Deviation 

3 184.2 2.6 

5 214.6 1.2 

8 255.1 19.1 

 

Table (8) and Fig. (6) show an increase of notch fatigue reduction strength with decrease of notch radius. In 

addition, the Peterson and Neuber’s empirical models are statistically very similar when notch radius is big. However, 

when decreases notch size the notch factor are more different. The comparison between experimental notch fatigue 

factor and the empirical models shows that ASTM A743 CA6NM alloy steel is less sensitive than predictions. 

 

Table 8. Experimental and theory fatigue notch reduction factor estimate for each geometry 

 

Notch radius (mm) 

Fatigue notch reduction factor. Kf 

Experimental 

Eq. (2) 

Neuber 

Eq. (4) 

Peterson 

Eq. (6) 

3 1.96 ± 0.08 2.27 ± 0.03 2.37 ± 0.03 

5 2.04 ± 0.07 1.95 ± 0.05 2.02 ± 0.05 

8 1.55 ± 0.12 1.51 ± 0.06 1.54 ± 0.06 

 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS 

 

 

3.00 5.00 7.00 9.002.00 4.00 6.00 8.00

Notch radius (mm)

1.00

2.00

3.00

K
f

Experimental

Neuber

Peterson

 
 

Figure 6. Comparison between experimental and theory models for notch fatigue reduction factor. 

 

Table 9. Staircase testing results for 2.10
6 
cycles (R=-1) 

 

Notch radius (3 mm) Notch radius (5 mm) Notch radius (8 mm) 

Specimen # S (MPa) Cycles Specimen # S (MPa) Cycles Specimen  # S (MPa) Cycles 

1 190.19 1.2.10
6
 1 223.03 8.2.10

5
 1 258.49 run out 

2 186.19 1.4.106 2 217.56 run out 2 269.67 run out 

3 182.20 run out 3 223.03 5.2.10
5
 3 280.86 1.1.10

6
 

4 186.19 8.1.10
5
 4 217.56 run out 4 269.67 9.6.10

5
 

5 182.20 run out 5 223.03 4.0.10
5
 5 258.49 run out 

6 186.19 1.2.106 1 221.20 7.4.105 6 269.67 run out 

7 182.20 run out 2 219.38 7.6.10
5
 7 280.86 15.10

5
 

8 186.19 9.1.10
5
 3 217.56 4.5.10

5
 8 269.67 4.1.10

5
 

9 182.20 1.7.10
6
 4 215.73 9.4.10

5
 9 258.49 2.2.10

5
 

10 178.21 7.5.105 5 213.91 run out 10 247.30 run out 

Sf (MPa) 184.2 ± 2.6 Sf (MPa) 214.8 ± 1.2 Sf (MPa) 255.1 ± 19.1 

 

4. CONCLUSIONS 
 

The aim of this work was to evaluate the effect of notch fatigue behavior of ASTM A743 CA6NM alloy steel. The 

Staircase method was used to determine the endurance limit and its standard deviation for three different notch sizes. A 

reduction data method by Dixon and Mood was very efficiently to determine fatigue limit. The statistical properties are 

easily determined and the mean value is has very accuracy because the technique concentrates points around average. 

However, the standard deviation does not reliable. The fatigue limit decreases when notch radius decreases as it was 

waited. Therefore. the notch fatigue reduction factor decreases when notch radius increases. For big radius, the 

predictions are statistically similar and can to predict the fatigue behavior, otherwise Peterson and Neuber’s empirical 

models does not predict correctly.  In addition, the alloy steel tested in this research is less sensitive than theory models 

used.  
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