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Abstract. The aim of this work is to present the calculation of the topological derivative for the total potential energy
associated to the Kirchhoff’s plate bending problem, when a circular inclusion is introduced at an arbitrary point of the
domain. By using classical shape sensitivity together with asymptotic analysis of the solution, we obtain a closed formula
for the topological sensitivity. For the sake of completeness, the analytical expression for the topological derivative is
checked numerically using the standard finite element method. Then, we use the obtained sensitivity as a descent direction
in a topology design algorithm which allows to simultaneously remove and insert material. Finally, we explore this feature
showing a numerical experiment concerning structural topology design within the context of Kirchhoff’s plate bending
problem.
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1. INTRODUCTION

The topological asymptotic analysis provides the sensitivity of a given shape functional with respect to an infinitesimal
singular domain perturbation, like the insertion of holes, inclusions, source-term or cracks. Therefore, this sensitivity can
be naturally used as a descent direction in an optimization algorithm. The topological derivative can be seen as an
extension of the classical notion of derivative. It has been rigorously introduced by Sokołowski and Żochowski (1999).
Since then, the topological derivative concept has proved extremely useful in the treatment of a wide range of problems
topology optimization (Allaire et al. (2005),Amstutz and Andrä (2006),Lee and Kwak (2008)), inverse analysis (Feijóo
(2004),Amstutz et al. (2005)) and image processing (Auroux et al. (2007), Larrabide et al. (2008)) and has become a
subject of intensive research. Concerning the theoretical development of the topological asymptotic analysis, the reader
may refer to Nazarov and Sokołowski (2003), for instance.

In order to introduce these concepts, let us consider an open bounded domain Ω ⊂ R2, which is submitted to a non-
smooth perturbation in a small region ωε(x̂) = εω(x̂) of size ε with center at an arbitrary point x̂ ∈ Ω. Thus, we assume
that a given shape functional ψ admits the following topological asymptotic expansion

ψ(Ωε) = ψ(Ω) + f(ε)DT (x̂) + o(f(ε)) , (1)

where Ωε is the topologically perturbed domain and f(ε) is a positive function that decreases monotonically such that
f(ε) → 0 when ε → 0. Then, the term DT (x̂) is defined as the topological derivative of ψ. Therefore, this derivative
can be seen as a first order correction on ψ(Ω) to estimate ψ(Ωε). In addition, from Eq. (1), we have that the classical
definition of the topological derivative is given by

DT (x̂) = lim
ε→0

ψ (Ωε)− ψ (Ω)
f (ε)

. (2)

In Novotny et al. (2005) is presented the calculation of the topological derivative for the total potential energy asso-
ciated to the Kirchhoff’s plate bending problem, when the domain is perturbed by the introduction of an infinitesimal
hole with homogeneous Neumann boundary condition. Then, in this work we extend the above result considering as
topological perturbation the nucleation of an infinitesimal circular inclusion with another material property.

This paper is organized as follows. Section 2 describes the model associated to the Kirchhoff’s plate bending problem.
The topological sensitivity analysis of the total potential energy associated to the problem under consideration is developed
in Section 3, where the main result of the paper is presented: a closed formula for the topological derivative. In addition,
a simple finite element-based numerical example is also provided for the numerical verification of the analytically derived
topological derivative formula. In section 4 is presented a numerical experiment showing the potentiality of the presented
methodology in the context of topological optimization. The paper ends in Section 5 where concluding remarks are
presented.
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2. FORMULATION OF THE PROBLEM

Let us review briefly in this section the theory of elastic plates under Kirchhoff’s assumptions. Thus, we consider a
flat plate, with thickness ρ ∈ R+ (admitted constant for the sake of simplicity), characterized by the two-dimensional
domain Ω ⊂ R2, which is submitted to bending effects. In order to model this phenomenon Kirchhoff developed, in 1850,
a theory based on the following ad-hoc kinematic assumptions:

The normal fibers to the middle plane of the plate remain normal during deformation and do not suffer
variations in their length.

Consequently, both transversal shear and normal deformations are null. This fact limits the application of Kirchhoff’s
approach on plates whose deflections are small in relation to the thickness ρ. Note that in the presence of concentrated
loads or defects like cracks, additional care shall be necessary since transversal shear deformation may be significative.

Using the kinematic assumptions introduced by Kirchhoff and adopting the constitutive relation for a linear elastic
isotropic material, we have the following resultant moment and plate curvature relation

M = −C∇∇u , (3)

where the scalar field u denotes the transverse displacement (deflection), the second order tensor ∇∇u represents the
change of curvature of the plate, the symmetric tensor M represents the resultant bending moment acting in the middle
plane of the plate and C represents the fourth order elasticity tensor integrated through the plate thickness, given by

C=
Eρ3

12 (1− ν2)
[(1− ν) I+ ν (I⊗I)] , (4)

being I and I respectively the second and fourth order identity tensors, E the Young’s modulus and ν the Poisson’s ratio.
In this particular case, we consider that the shape functional ψ(Ω) in (1) takes the form

ψ(Ω) := JΩ (u) =
1
2

∫

Ω

C∇∇u · ∇∇u−
∫

Ω

bu−
∫

ΓN

(
q̄u + m̄

∂u

∂n

)
−

nv∑

i=1

Q̄viu(xvi) , (5)

that represents the total potential energy of the plate in the reference configuration Ω and u is the solution to the following
variational problem: find u ∈ U , such that

∫

Ω

C∇∇u · ∇∇η −
∫

Ω

bη −
∫

ΓN

(
q̄η + m̄

∂η

∂n

)
−

nv∑

i=1

Q̄viη(xvi) = 0 ∀η ∈ V , (6)

where the first term represents the virtual strain energy stored in the plate and the other terms the virtual work of the
external loads. The set of admissible displacements U and the space of admissible displacements variations V are defined
as follows

U :=
{
u ∈ H2 (Ω) : u|ΓD

= ū and ∂nu|ΓD
= θ̄

}
and V :=

{
η ∈ H2 (Ω) : η|ΓD

= 0 and ∂nη|ΓD
= 0

}
,

(7)

where ΓD and ΓN respectively are the Dirichlet and Neumann boundaries such that Γ = ΓD ∪ ΓN is the boundary of Ω,
with ΓD ∩ ΓN = ∅; ū is a displacement and θ̄ a rotation, both prescribed on ΓD. Moreover, b, q̄, m̄ and Q̄vi , in Eq. (6)
are the system of forces compatible with Kirchhoff’s approach, where b is the transverse force over the middle plane Ω,
q̄ a transverse shear load and m̄ is a moment, both prescribed on ΓN ; Q̄vi is the transverse shear load concentrated at the
point xvi ∈ ΓN in which there is some discontinuity (vertex, for instance) and nv represents the total number of points
xvi . Finally, ∂n(·) is used to denote ∇(·) · n, where n is the unit normal vector pointing toward the exterior of Ω.

In our case, we consider a perturbation on the domain characterized by the nucleation of a small circular inclusion of
radius ε with different Young’s modulus with respect to the bulk material. Thus we have a new domain Ωε = Ω\Bε ∪ Iε

whose boundary is denoted by Γε = Γ ∪ ∂Iε, where Bε = Bε ∪ ∂Bε is a ball of radius ε centered at the point x̂ ∈ Ω.
Thus, we have the original domain without inclusion Ω and the new one Ωε with a small inclusion Iε. Then, we can define
a elasticity tensor Cε as

Cε = γεC , (8)

where γε is the contrast defined in this context as:

γε =
{

1 if x ∈ Ω\Bε

γ if x ∈ Iε
. (9)



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

Therefore, the shape functional ψ(Ωε) in 1 is given by

ψ(Ωε) := JΩε
(uε) =

1
2

∫

Ωε

Cε∇∇uε · ∇∇uε −
∫

Ωε

buε −
∫

ΓN

(
q̄uε + m̄

∂uε

∂n

)
−

nv∑

i=1

Q̄vi
uε(xvi

) , (10)

that represents the total potential energy of the plate in the perturbed configuration Ωε and uε is the solution to the
following variational problem: find uε ∈ Uε, such that

∫

Ωε

C∇∇uε · ∇∇ηε −
∫

Ωε

bηε −
∫

ΓN

(
q̄ηε + m̄

∂ηε

∂n

)
−

nv∑

i=1

Q̄vi
ηε(xvi

) = 0 ∀ηε ∈ Vε , (11)

where the set of admissible displacements Uε and the space of admissible displacements variations Vε are defined as

Uε := {uε ∈ U : [[uε]] = 0, [[∂nuε]] = 0 on ∂Iε} and Vε := {ηε ∈ V : [[ηε]] = 0, [[∂nηε]] = 0 on ∂Iε} . (12)

Lets us introduce the notation [[(·)]] = (·)|e − (·)|i, that represents the jump of (·) across the boundary of the inclusion
∂Iε and (·)|e and (·)|i used to indicate that (·) is being evaluated on the matrix and on the inclusion, respectively. Then,
the Euler-Lagrange equation as well as the boundary conditions associated to the variational problem (Eq. 11) are given
by the following fourth order boundary-value problem:

Find uε, such that




−div (divMε) = b in Ω\Bε

Mε = −C∇∇uε in Ω\Bε

uε = ū
∂nuε = θ̄

}
on ΓD

∂tM
tn
ε + divMε·n=q̄

−Mnn
ε = m̄

}
on ΓN

M tn
ε |+ −M tn

ε |− = Q̄vi on xvi ∈ ΓN , i = 1, ..., nv
−div (divMε) = b
Mε = γC∇∇uε

in Iε

[[∂tM
tn
ε ]] + [[divMε]] · n = 0

[[−Mnn
ε ]] = 0

[[∂nuε]] = 0
[[uε]] = 0





on ∂Iε

. (13)

Being ∂t(·) = ∇(·) · t and ∂n(·) = ∇(·) · n. It should be noted that we can decompose the stress tensor Mε along the
boundary Γε as follows

Mε=Mnn
ε (n⊗ n) + Mnt

ε (n⊗ t) + M tn
ε (t⊗ n) + M tt

ε (t⊗ t) , (14)

where n and t are respectively the outward normal and tangential unit vectors (n · t = 0) defined on Γε.

3. TOPOLOGICAL SENSITIVITY ANALYSIS

In the present section, we compute the topological derivative for the total potential energy shape functional associated
to the thin elastic plate bending problem within the framework of Kirchhoff’s simplified assumptions.

3.1 Topological Derivative Calculation

Let us state the following result, leading to a constructive method for computing the topological derivatives (Novotny
et al. (2003)). The topological derivative given by Eq. (2) can be written as

DT (x̂) = lim
ε→0

1
f ′ (ε)

d

dε
ψ (Ωε) , (15)

where d
dεψ (Ωε) may be seen as the classical sensitivity analysis to the change in shape produced by an uniform expansion

of the inclusion. In fact, considering a direct analogy with continuum mechanics we have that the shape derivative of the
cost function ψ (Ωε) can be written as

d

dε
ψ (Ωε) =

∫

Γε

[[Σε]]n · v +
∫

∂Iε

[[Mε]]n · ∇vT∇uε −
∫

Ωε

divΣε · v , (16)
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being v the shape change velocity defined as
{

v = −n on ∂Iε,
v = 0 on Γ, (17)

and Σε, can be seen as an extension of the Eshelby’s energy-momentum tensor (see for instance Eshelby (1975)) for
elastic plates within the framework of Kirchhoff’s approach, which is given by

Σε = −1
2

(Mε · ∇∇uε + 2buε) I + (∇∇uε)Mε −∇uε ⊗ divMε . (18)

Moreover, from Novotny et al. (2005) we have that the tensor Σε is divergence free tensor field, that is
∫

Ωε

divΣε · v dΩε = 0 ∀ v∈Ωε ⇔ divΣε = 0 . (19)

Then, from (17) the topological derivative becomes

DT (x̂) = −lim
ε→0

1
f ′ (ε)

{∫

∂Iε

[[Σε]]n · n +
∫

∂Iε

[[Mε]]n · ∇nT∇uε

}
. (20)

3.2 Asymptotic analysis

In order to obtain the final expression of the topological derivative, we need to study the behavior of the integral given
by Eq. (20) in relation to the parameter ε, which may be obtained through an asymptotic analysis of the solution uε. Then,
introducing a polar coordinate system (r, θ) aligned with the principal stress directions and centered at x̂, we have the
following asymptotic expansion for the stress components

Mnn
ε |e = S

(
1− 1− γ

1 + γα

ε2

r2

)
+ D

(
1− 1− γ

1 + βγ

(
4ν

3 + ν

ε2

r2
+ 3β

ε4

r4

))
cos 2θ +O(ε) , (21)

M tt
ε

∣∣
e

= S

(
1 +

1− γ

1 + γα

ε2

r2

)
−D

(
1 +

1− γ

1 + βγ

(
4

3 + ν

ε2

r2
− 3β

ε4

r4

))
cos 2θ +O(ε) , (22)

Mnt
ε

∣∣
e

= −D

(
1− β

1− γ

1 + βγ

(
2
ε2

r2
− 3

ε4

r4

))
sin 2θ +O(ε) , (23)

Mnn
ε |i =

2S

(1− ν) (1 + γα)
+

4D

(3 + ν) (1 + βγ)
cos 2θ +O(ε) , (24)

M tt
ε

∣∣
i

=
2S

(1− ν) (1 + γα)
− 4D

(3 + ν) (1 + βγ)
cos 2θ +O(ε) , (25)

Mnt
ε

∣∣
i

= − 4D

(3 + ν) (1 + βγ)
sin 2θ +O(ε) , (26)

where

S =
m1 + m2

2
, D =

m1 −m2

2
, α =

1 + ν

1− ν
and β =

1− ν

3 + ν
, (27)

m1 and m2 are eigenvalues (the principal bending moments) of the generalized stress (bending moment) tensor M (asso-
ciated to the original domain without inclusion Ω) evaluated at the point x̂ ∈ Ω, that is M |x̂.

Next, by substituting the above expansions into Eq. (20), we observe that f ′ (ε) = meas (∂Bε) ⇒ f (ε) = meas (Bε)
and we can finally compute the limit ε → 0 in Eq. (20) which becomes

DT (x̂) =
6(1− γ)

Eρ3

[
(m1 + m2)

2

1 + γα
+ 2

αβ

1 + γβ
(m1 −m2)

2

]
. (28)

On the other hand m1 and m2 are given by

m1,2 =
1
2

(
trM ±

√
2MD ·MD

)
, (29)

where MD is the deviatory part of the stress-tensor M , that is

MD = M − 1
2
tr (M) I . (30)
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Further substituting Eqs. (29, 30) into Eq. (28), we have that

DT (x̂) =
6 (1− γ)

Eρ3

(
4

αβ

1 + γα
M ·M +

(
1

1 + γα
− 2

αβ

1 + γβ

)
(trM)2

)
. (31)

Finally, we can rewrite the topological derivative as a function of the tensors M and∇∇u by means of the constitutive
equation and a simple manipulation, which leads to

DT (x̂) = −µα
1− γ

1 + γβ

(
4βM · ∇∇u +

(
1− 2β + γβ(1− 2α)

1 + γα

)
trM tr∇∇u

)
, (32)

where µ = 1
2(1+ν) . It should be noted that M and ∇∇u are associated to the unperturbed domain Ω and that we have

assumed b = 0.

3.3 Numerical Verification

In order to verify the topological derivative formulae we have considered a unit square plate, simply supported at the
corners, with thickness ρ = 0.05 and Young’s module E = 1.0. With this data we used the Eq. (2) to perform a sequence
of finite element analyses to obtain ψ (Ωε) considering inclusions of radii

ε ∈ {0.08, 0.04, 0.02, 0.01}, (33)

centered at x̂ = (0.5, 0.5). The solutions u and uε are calculated via the Finite Element Method. More specifically, in
the numerical experiments we have adopted the DKT finite element (Discrete Kirchhoff Triangle, Batoz (1982)). The
finite element mesh used contains 12730 nodes and 25322 elements. Figure 1 shows the mesh and the domain with
a bilinear bending distribution along the edges of the plate where the numbers represent the maximum values of the
bending moments at a distance a = 0.10 from the corners.

(a) Domain (b) Finite element mesh.

Figure 1. Numerical Verification

We have calculated the topological derivative for the cases: γ = {0.1, 0.5, 2, 10}. The results are shown in the Fig. 2
where the analytical value of the topological derivative (28) was calculated and compared with the asymptotic behavior
of the eq. (2) for the decreasing values of ε.
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(d) γ = 10.0

Figure 2. Topological derivative verification.

4. NUMERICAL EXPERIMENTS

In Section 3 we have calculated the topological derivative for the total potential strain energy associated to the Kirch-
hoff’s plate bending problem with respect to the nucleation of a circular inclusion. The topological derivative, in this
context, indicates the best place to insert or remove material in order to minimize the total potential energy. Therefore,
this information can be used as an alternative method to perform the topology design of plate components. In particular,
the main idea is to change materials (more rigid ↔ less rigid) where |DT (x̂)| assumes smallest/higher values. For clas-
sical methods of topology optimization based on relaxed formulations we refer the reader to the fundamental paper by
Bendsøe and Kikuchi (1988) and its further development.

In order to proceed, the field DT (x̂) is evaluated at the nodal points of the finite element mesh, being that we inter-
change the material properties in the elements that share the node which satisfies ξinf ≤ DT (x̂K) ≤ ξsup, where x̂K is
the K-th nodal point of the finite element mesh.

x^
K

Soft Material

Hard Material

Figure 3. Sketch of the adopted procedure of inserting and to removing material in a finite element mesh.

In this example, we have a square plate supported by a column at its center submitted to concentrated loads Q̄ = 100
at the corners (Fig. 4 with R = 50). Considering the symmetry of the problem, the initial domain Ω = [0, 250]× [0, 250]
is discretized in 35094 finite elements and 17794 nodes. The algorithm used allows us to insert and remove material in
an iterative process and was proposed by Giusti et al. (2008). In particular, we interchange 1% of hard to soft materials at
each step until the volume constraint is reached, then we reduce the step size to 0.25% and continue the iterative process.
The Young’s modulus E = 210× 103, Poisson’s ratio ν = 0.3, thickness ρ = 5 and the contrast γ = 10−2 are assumed.
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Furthermore, the region that appears in white is not perturbed and the thick line and the line-dot that appear on the figures
are respectively used to denote clamped (u = ∂nu = ∂tu = 0) and symmetry (∂nu = 0) boundary conditions.

R

(a) model

Field: vMises-0

Max.: 1.434206E+002

Node: 9730

Min.: 4.605431E+001

Node: 8390

Palette:

1.434206E+002

1.369295E+002

1.304384E+002

1.239473E+002

1.174562E+002

1.109652E+002

1.044741E+002

9.798299E+001

9.149191E+001

8.500082E+001

7.850974E+001

7.201865E+001

6.552757E+001

5.903648E+001

5.254540E+001

4.605431E+001

(b) von Mises stress field

Figure 4. Model and stress distribution

Considering the volume constraint given by 50% of the initial volume, in Fig. 5 we show the obtained results. The
relative value of the shape functional at each iteration j, ψ

(
Ωj

)
, throughout the optimization procedure is presented in

Fig.6. The history of the hard material volume during the iterative process can be observed in Fig. 7. The comparison
between the values of the von Mises stress field obtained at iterations j = {38, 395} can be observed in Fig. 8.

(a) j = 25 (b) j = 38

(c) j = 239 (d) j = 395

Figure 5. Obtained topologies during the iterative process
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Figure 6. Relative values of the shape functional during the iterative process.
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Figure 7. Volume fraction of the hard material during the iterative process.

Field: vMises-0

Max.: 3.125962E+002

Node: 1985

Min.: 1.272631E+000

Node: 6870

Palette:

3.125962E+002
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(a) j = 38

Field: vMises-0

Max.: 2.317440E+002

Node: 4471

Min.: 1.118002E+000

Node: 276

Palette:
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1.649307E+001
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(b) j = 395

Figure 8. von Mises stress fields.

As a conclusion of this numerical experiment we observe that once the volume constraint is reached, the algorithm
insert and remove material simultaneously, preserving the current volume fraction, in order to minimize the total potential
energy. As a consequence we obtain a configuration in which the bending moments are more uniformly distributed.
In other words, the stress field is redistributed, as can be seen in Fig. 8, leading to a reduction of more than 25% in its
maximum value. This procedure leads to better results than the ones obtained in Novotny et al. (2005) simply by removing
material.
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5. Conclusions

An analytical expression for the topological derivative associated to the total potential energy for the Kirchhoff’s plate
bending problem, when a circular inclusion of a material with different Young’s modulus is introduced at an arbitrary point
of the domain, has been proposed in this paper. In order to verify the obtained analytical expression, we have developed
a numerical validation showing the convergence of the numerical topological derivative to their corresponding analytical
value. The obtained result was used as a steepest descent direction in a topology design algorithm. Finally, we have
presented a numerical experiment showing the potentialities of the proposed methodology in the context of Kirchhoff’s
plate structural design.
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