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Abstract. Due to the great technological improvement obtained in #st tecades, it became possible to use robotic
vehicles for underwater exploration. During the executida certain task with the robotic vehicle, the operator retx
monitor and control a number of parameters. If some of thesarpeters, as for instance the position and the orientation
of the vehicle, could be controlled automatically, the dpleration of the vehicle can be enormously facilitated.dglasn
experimental tests, it was verified that ROV'’s thrusteresystan exhibit dead-zone nonlinearities. This work dessrib
the development of a variable structure control strategyafo underwater robotic vehicle with a thruster system sabje
to dead-zone input. Numerical results are presented inrdamdemonstrate the control system performance.

Keywords: Adaptive Algorithms, Dead zone, Fuzzy logic, Sliding Mpdeslerwater Robotic Vehicles
1. INTRODUCTION

The control system is one of the most important elements ofaerwater robotic vehicle, and its characteristics (ad-
vantages and disadvantages) play an essential role whdrasiie choose a vehicle for a specific mission. Unfortunately
the problem of designing accurate positioning systems maletwater robotic vehicles still challenges many engimeer
and researchers interested in this particular branch dheagng science. A growing number of papers dedicateddo th
position and orientation control of such vehicles confirnesriecessity of the development of a controller, that coeld d
with the inherent nonlinear system dynamics, imprecisedgyghamic coefficients, and external disturbances.

It has already been shown (Yuh, 1994; Goheen and Jeffre@§) 1Bat, in the case of underwater vehicles, the tra-
ditional control methodologies are not the most suitabl@eand cannot guarantee the required tracking perforenanc
On the other hand, sliding mode control, due to its robustagsinst modeling inaccuracies and external disturbance,
has proven to be a very attractive approach to cope with tlublems (Bessa et al., 2008c; Chatchanayuenyong and
Parnichkun, 2007; Pisano and Usai, 2004; Guo et al., 2008y#&r and Pinto, 1996; Christi et al., 1990; Healey and
Lienard, 1985; Yoerger and Slotine, 1985). But a well knowamback of conventional sliding mode controllers is the
chattering effect. To overcome the undesired effects ottmrol chattering, Slotine (1984) proposed the adopticm o
thin boundary layer neighboring the switching surface,dplacing the sign function by a saturation function. This-su
stitution can minimize or, when desired, even completélyiglate chattering, but turngerfect trackingnto atracking
with guaranteed precisioproblem, which in fact means that a steady-state error Withgs remain. In order to enhance
the tracking performance inside the boundary layer, sonaptagk strategy should be used for uncertainty/distureanc
compensation.

Due to the possibility to express human experience in arrigihgoic manner, fuzzy logic has been largely employed
in the last decades to both control and identification of dyical systems. In spite of the simplicity of this heuristic
approach, in some situations a more rigorous mathemateztihent of the problem is required. Recently, much effort
(Liang and Su, 2003; Wong et al., 2001; Ha et al., 2001; Yu.e18P8) has been made to combine fuzzy logic with sliding
mode methodology. An appealing option is to embed an adafitzzy inference system inside the boundary layer of a
sliding mode controller, to cope with the uncertainties digdurbances that can arise (Bessa and Barréto, 2009). This
control strategy has already been successfully appliedeaépth regulation of remotely operated underwater vesicl
(Bessa et al., 2008c) and to chaos control in a nonlinearypend(Bessa et al., 2009a).

As demonstrated by (Bessa et al., 2004, 2005, 2006b), m#minsters may also exhibit non-smooth nonlinearities
such as dead-zones. Dead-zone is a hard nonlinearity,efindgjlencountered in many actuators of industrial control
systems, especially those containing some very common @oemgs, such as hydraulic (Knohl and Unbehauen, 2000;
Bessa et al., 2006a; Valdiero et al., 2006) or pneumatic (i@wee and Perondi, 2006; Andrighetto et al., 2008; Valdiero
et al., 2008) valves.
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Dead-zone characteristics are often unknown and it waadyrebserved that its presence can severely reduce control
system performance and lead to limit cycles in the closeg-kystem. The growing number of papers involving systems
with dead-zone input confirms the importance of taking sublra nonlinearity into account during the control system
design process. The most common approaches are adaptaraesiiTao and Kokoto¥j 1994; Wang et al., 2004; Zhou
et al., 2006; Ibrir et al., 2007), fuzzy systems (Kim et ab94; Oh and Park, 1998; Lewis et al., 1999; Bessa et al.,
2008a), neural network$Selmi and Lewis, 2000; Tsai and Chuang, 2004; Zhang and Ge, 20@Ajaiable structure
methods (Corradini and Orlando, 2002; Shyu et al., 2005)nyM# these works (Tao and Kokotdyil994; Kim et al.,
1994; Oh and Park, 1998elmt and Lewis, 2000; Tsai and Chuang, 2004; Zhou et al., 20@6ans$nverse dead-zone to
compensate the negative effects of the dead-zone noritineaen though this approach leads to a discontinuous abntr
law and requires instantaneous switching, which in praatian not be accomplished with mechanical actuators. An
alternative scheme, without using the dead-zone inverag originally proposed by Lewis et al. (1999) and also adbpte
by Wang et al. (2004). In both works, the dead-zone is treasealcombination of a linear and a saturation function. This
approach was further extended by Bessa et al. (2008b), ar twdhccommodate non-symmetric dead-zones. The control
strategy proposed by Bessa et al. (2008b) has also alreadysoiecessfully applied to electro-hydraulic systemsg8&es
et al., 2009b).

In this paper, based on the control scheme proposed in (Btsda 2008b), an adaptive fuzzy sliding mode con-
troller is employed for the dynamic positioning of an undatev vehicle with four controllable degrees of freedom and
considering thruster system subject to a dead-zone inghé.atloption of a reduced order mathematical model and the
development of the control system in a decentralized fashieglecting cross-coupling terms, is discussed. Nuralkeric
results are also provided to confirm the control system effica

2. VEHICLE DYNAMICS

A reasonable model to describe the underwater vehicle’amycal behavior must include the rigid-body dynamics of
the vehicle’s body and a representation of the surrounding flynamics. Such a model must be composed of a system
of ordinary differential equations, to represent rigiddpaynamics, and partial differential equations to repnéseth
tether and fluid dynamics.

In order to overcome the computational problem of solvingstesn with this degree of complexity, in the majority of
publications (Bessa et al., 2008c; Antonelli, 2007; Hoamdjléreuzer, 2007; Smallwood and Whitcomb, 2004; Hsu et al.,
2000b,a; Kiriazov et al., 1997; Yoerger and Slotine, 198%)rmaped-parameters approach is employed to approximate
vehicle’s dynamical behavior.

The equations of motion for underwater vehicles can be ptedewith respect to an inertial reference frame or with
respect to a body-fixed reference frame, Fig. 1. On this pb#sésequations of motion for underwater vehicles can be
expressed, with respect to the body-fixed reference framtbgifollowing vectorial form:

My +k(v) +h(v) +g(x) +d=71 (1)

wherev = [v,, vy, v, W, Wy, w] iS the vector of linear and angular velocities in the bodgdixeference frames =
[z,y, z,a, 3,7] represents the position and orientation with respect tonértial reference framéVI is the inertia matrix,
which accounts not only for the rigid-body inertia but alsothe so-called hydrodynamic added inerki&y) is the vector
of generalized Coriolis and centrifugal forcégy) represents the hydrodynamic quadratic dampitg, is the vector
of generalized restoring forces (gravity and buoyandygtands for occasional disturbances, arid the vector of control
forces and moments.

X
Figure 1. Underwater vehicle with both inertial and bodyetixeference frames.
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It should be noted that in the case of remotely operated wader vehicles (ROVs), the metacentric height is suf-
ficiently large to provide the self-stabilization of rolkY and pitch (3) angles. This particular constructive aspect also
allows the order of the dynamic model to be reduced to foureksyof freedomx = [z, y, 2, ], and the vertical motion
(heave) to be decoupled from the motion in the horizontal@ld his simplification can be found in the majority of works
presented in the specialized literature (Hoang and Kre@8#7; Zanoli and Conte, 2003; Guo et al., 2003; Hsu et al.,
2000b; Kiriazov et al., 1997; Pinto, 1996; Da Cunha et al958tYoerger and Slotine, 1985). Thus, the positioning syste
of a ROV can be divided in two different parts: Depth controarfcerning variable), and control in the horizontal plane
(variablesz, y and~).

Another important issue in the case of ROVs is the disturbdarce caused by the umbilical (or tether cable). The
umbilical can be treated as a continuum, discretized wighfithite element method or modeled as multibody system
(Bevilacqua et al., 1991; Pinto, 1996). However, the aaopdf any of these approaches requires a computationat effor
that would be prohibitive for on-line estimation of the canbtaction. A common way to surmount this limitation is to
consider the forces and moments exerted by the tether asmaraohd incorporate them into the vecibr

Regarding the thrust forces, the steady-state axial tAfysbduced by marine thrusters is presented in the literature
as proportional to the square of propeller's angular vgyo@i (Newman, 1986). This quadratic relationship can be
conveniently represented by

T =CrQlQ) )

whereC is a function of the advance ratio and depends on consteuctigracteristics of each thruster.
Nevertheless, according to experimental results (Besal, @004, 2005, 2006b), marine thrusters may exhibit dead-
zones and could be mathematically described by

m (QQ] &) i Qe <6
T=DQQ)={ 0 it & < QO <0, 3)
me (U0 =5,) i Q0] > 6,

Figure 2 shows a comparative analysis between some expadhnesults and the thrust models presented in Eq.(2)
and Eq.(3). The required parameters for both models weraddt with an implementation of Levenberg-Marquardt’s
algorithm (Marquardt, 1963).
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Figure 2. Comparative analysis between experimental chtdveo thrust models.

The experiments were carried out in a wave channel with thestér units of a small remotely operated underwater
vehicle, developed at the Institute of Mechanics and Ocewirteering of the Hamburg University of Technology. The
ROV is equipped with eight thrusters for dynamic positi@nmith respect to four degrees of freedom and a passive arm
for position and attitude measurement. A picture of the @rpental underwater vehicle is presented in Fig. 3.

For control purposes, Eq. (3) can be rewritten in a more gpjate form (Bessa et al., 2008b):

T = D(Q[2]) = m(Q[2)[2]Q] — d(2[2])] (4)

where
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=

Figure 3. The experimental remotely operated underwatache

if QO <0

m(ﬂlﬂl)z{ Zl it Q>0 ©)

and

5 it Qo <d
aQ) =4 Q| i &< <, (6)
5, if Q>0

Furthermore, the effect of the forces produced by each otleeogight thrusters on the vehicle can be described in
body-fixed reference frame by

=BT 7)

whereT € R?® is a vector containing the forces produced by each thrusttBac R**® is a matrix which represents the
distribution of the thrust forces on the vehicle.

3. DYNAMIC POSITIONING SYSTEM

The dynamic positioning of underwater robotic vehiclesssantially a multivariable control problem. Nevertheless
as demonstrated by Slotine (Slotine, 1983), the variablestre control methodology allows different controlléoshe
separately designed for each degree of freedom. Over the@eades, decentralized control strategies have beeasaicc
fully applied to the dynamic positioning of underwater \&@és (Chatchanayuenyong and Parnichkun, 2007; Smallwood
and Whitcomb, 2004, Kiriazov et al., 1997; Da Cunha et al95t%oerger and Slotine, 1985).

The control law for each degree of freedom can be easily dedigith respect to the inertial reference frame, Eq. (1)
should be rewritten in this coordinate system. On this basiasidering that the restoring forces could be passively
compensated (Kiriazov et al., 1997) and that J(x)v, v = J~'(x)x ande = J~'% + J~'%, whereJ(x) is the
Jacobian transformation matrix, the equations of motioarotinderwater vehicle, with respect to the inertial refeeen
frame, becomes

Mx+k+h+d=7 (8)
whereM =J- ™M J k=3 Tk +J-"™MJ %5, h=J"Th,d=J Tdandr = J Tr.

In order to develop the control law with a decentralized apph, Eg. (8) can be rewritten as follows:

ii:mgl(ﬁ—]}i—ﬁi—d}); i:1,2,3,4, (9)

wherez;, 7;, k;, h; andd; are the components &f= [z, y, z,7], 7, k, h andd, respectively. Concerning;, it represents
the main diagonal terms & TM J~*. The off-diagonal terms of "TM J ! are incorporated in the vectpr
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In this way, according to (Bessa et al., 2008b) and considehie saturation function as the smooth approximation to
the ideal relay, and; = #; + \;%;, the control law for each degree of freedom could stated lasife

i di g (B4, — Nifis) — K sat(si/ ) (10)

D
=0

Ti = ki +
wherem;, k; andh; stands for estimates af;, k; andh;, respectively.

Concerningmn;, it represents in the depth controller the mass of the velgtls the respective added mass. In the
horizontal plane, estimates of the main diagonal term$ofM J !, may be attributed to the correspondent To
ensure the stability of the closed-loop system, estimdt#secoff-diagonal terms a3 ~TM J ! should be incorporated
in the vectord, as will be discussed further in the paper.

It should be emphasized that the lumped parameters appdmpted to describe the hydrodynamic effects (quadratic
damping and added inertia), represents a simplificatioth h@mce only estimates of the actual phenomena are available
Due to the presence of the tedm "M J~'%, the vectoik cannot be exactly known.

The gainK; of each controller should be carefully determined in ordeartsure the global stability of the closed-loop
system, and robustness with respect to disturbances armdtaimties. According to (Bessa et al., 2008K), must be
defined as follows:

K; > Pi +13Gim; + |di (s3)| + mi(Gi — 1)|Zas — N (11)

wheren; are strictly positive constants related to the reaching tiineach controller.

Definingm; = \/MmaxMmin @NAG; = \/Mmax/Mmin aUtomatically implies that

G ' <

(3

<G (12)

§| |§\>

-~

RegardingP;, this term should be defined for each controller in order topensate the uncertainties of the respective
components of vectois andh, and perturbations provided Ipy i.e.,

|Ak; + Ah; + d;| < P; (13)

Returning to the control law, Eg. (10), the adoption of a &ttan function,sat(-), instead of the well-known sign
function, sgn(-), leads to the formation of a thin boundary layer neighboeagh switching surfacé;(¢). The incor-
poration of this boundary layer can minimize or, when dekieven completely eliminate chattering, but tupesfect
trackinginto atracking with guaranteed precisigsroblem, leading to an inferior tracking performance.

In order to enhance the tracking performance, in this wanlg@daptive fuzzy inference system is embedded inside the
boundary layer, to cope with the uncertainties and distucba that can arise.

The adopted fuzzy inference system was the zero order TSka@aSugeno—Kang), whose rules can be stated in a
linguistic manner as follows:

IfﬁisUrthenJ:f)r, r=12,...,.N

wherel, are fuzzy sets, whose membership functions could be pryopedsen, and), is the output value of each one
of the R fuzzy rules. . .

Considering that each rule defines a numerical value as btpithe final output/ can be computed by a weighted
average:

iy Dpey W dr
d(s) = Zle o (14)

or, similarly, but now for every degree of freedom,

whereD = [Dy, D,,...,Dy]T is the vector containing the attributed valu@s to each ruler, ¥(s) = [ (s), 12 (s),
..,¥n(s)]T is a vector with components, (s) = w,/ Zfil w, andw,. is the firing strength of each rule.
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In order to obtain the most suitable vaIuesdb(rs), the vectors of adjustable parameters will be automayicgitiated
by the following adaptation law:

]:ji = —¥iS; \Ili(si) (16)

whereyp; are strictly positive constants related to the adaptatibe r

For a more detailed discussion about the stability and agevee properties of the proposed control law, the reader
is referred to (Bessa and Barréto, 2009) and (Bessa et 8820

Now, given the required control forgeand the thruster’s arrangement on the vehicle, the for¢ekiwald be produced
by every thruster can be determined by

T=B"(BB")"'J°'7

whereBT (BB™)~! is the pseudo-inverse of mati. In this way, considering the required thrust forces and(Eg the
related angular velocity could be easily estimated for gaopeller.

4. SIMULATION RESULTS

The numerical simulations were performed with an impleragan in C, with sampling rates of 500 Hz for control
system and 1 kHz for dynamic model. The differential equetiof the dynamic model were numerically solved with the
fourth order Runge-Kutta method.

In order to simplify the design process, some parametersetontroller were chosen identical for all degrees of
freedom,\; = 086, ¢; = 005 andy; = 1 x 103. Concerning the fuzzy system, the same triangular and zoiga!
membership functions, with the central values defined'as= {-3; —1; —0,5; 0; 0,5; 1; 3}, were adopted for
each DOF. The vectors of adjustable parameters were inéihto zeroD; = 0, and automatically updated according
to Eq. (16). For the dynamic model, the following values wadepted:M = diag {80 kg, 80 kg, 100 kg, 8 kgm?}
andh = [125v,|v,|, 175v,|vyl, 250 v,|v,|, 12,5w.|w.|]T. The disturbance force was chosen to vary randomly in the
range of+3 N. The random nature of the disturbance was simulated ubmfuinctionsrand () andsrand() of the C
Standard Library. For controller design, the vehicle’sgpagters were chosen based on the assumption that exact value
are not known, but with a maximal uncertainty-625%.

To evaluate the control system performance, two differemb@rical simulations were performed. In the first case,
the underwater robotic vehicle was intended to move onlyh& XY plane, from his initial position/orientation at rest,
xo = [0,0,0,0]", to the desired final position/orientatisiy = [2.5, 2, 0, 7/2]T. Once this final position/orientation
is reached, it should stay there indefinitely, besides thidance forces. The obtained results are presented.id.Fig

Figure 4 shows the obtained response in the time domain. eTiessilts confirm that the proposed control strategy
was able to regulate and stabilize the dynamical behavitretinderwater vehicle in the horizontal plane. As observed
in Fig. 4(b), Fig. 4(d) and Fig. 4(f), the adaptive fuzzy siigl mode controller was also efficient in minimizing the
undesirable chattering effect.

Finally, the second case was a trajectory trackingin Here, from the initial positiox, = [0, 0,0, 0] at rest, the
vehicle was forced to move to the following desired postiog, = [0,3,3,0]", xo = [3,3,3,0]T, x3 = [3,3,0,0]7,
x4 = [1,3,0,0]T andxs = [1,1,0,0]T, wherety = 0s,t; = 30s,t5 = 60s,t3 = 90S,t, = 120 S,t5 = 150 s. During
the entire path, the yaw angle should be kept constart, 0. The obtained results are presented in Fig. 5 and Fig. 6.
By observing both figures, it can be verified that, with thegosed control system, the vehicle could follow the desired
trajectory, in spite of the disturbance forces. It can be alsserved, Fig. (6(d)), that the yaw anglg (vas held within
the acceptable bounds, defined by the chosen width of thedaoyiayer$., = 005.

5. CONCLUDING REMARKS

In this paper, the problem of compensating uncertaintjudisince in the dynamic positioning system of underwater
robotic vehicles is considered. An adaptive fuzzy slidingd® controller is implemented to deal with the stabilizatio
and trajectory tracking problems. The adoption of a redwredr mathematical model for the underwater vehicle and
the development of a control system in a decentralized daslmeglecting cross-coupling terms, is discussed. By siean
of numerical simulations, it could be verified that the prega strategy is able to cope with the uncertainties in hydrod
namics coefficients, the dead-zone input and the distudsatitat can typically arise in the subaquatic environment.
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Figure 4. Dynamic positioning of the vehicle in the horizmlane.
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