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 Abstract.  In this paper, a new technique for performance analysis of five-axis Co-ordinate Measuring Machines 

(CMMs) is presented. The investigation of five-axis machine accuracy is a problem much more complex compared to 

investigating three-axis machine accuracy as extra sources of error are introduced by added degrees of rotacional 

freedom.  In the first part of this research a novel form of space frame for error evaluation and uncertainty analysis of 

four-axis Coordinate Measuring Machines (CMMs) was proposed and applied. The novel space frame comprises a 

ball plate that incorporates seven high accuracy spheres. The volumetric error data obtained when a CMM measures 

the space frame, in different angular locations, can be used to verify whether a CMM maintains the manufacturer 

specifications.  The experimental results have demonstrated that this space frame provides a practical and effective 

mechanical artifact to assessing the volumetric performance of four-axis CMMs. Therefore, the purpose of this 

research  is to extend the application of this technique for  performance  analysis of five-axis CMMs. 
Keywords: Five-axis Coordinate Measuring Machines, Ball Plate. 

                                                                                                                                                                                                   

 

 

 

1. INTRODUCTION 

 

         Five-axis machine tools and Co-ordinate Measuring Machines (CMMs) are in widespread use as precision 

machining and measurement tools. These machines are very useful in particularly when the component to be machined 

and measured has a complex shape. They have attracted much attention due to their ability to machine and measure 

geometrically complex work-pieces efficiently and with higher dimensional accuracy.  In the past decades, much work 

has focused on three–axis machine tool and CMM accuracy under the influence of geometrical errors and thermal 

deformation (Srivastava et al., 1995). Basically, the existing methods to assess volumetric accuracy of three-axis 

machine can be classified into three groups of common techniques. They are: kinematic reference standard technique 

(Bryan, 1982; Ziegert and Mize, 1994; Lee and Ferreira, 2002); parametric calibration technique or synthesis method 

(Pahk and Burdekin, 1991; Kunzmann et al., 2005; Umetsu et al., 2005) and transfer standard technique (Zhang and 

Zang, 1991; Silva and Burdekin, 2002; Chiffre, et al., 2005). The kinematic reference standard technique, such as ball 

bar, is particularly simple for acquiring data, however, it is difficult to cover all of the measuring volume as well as it is 

difficult to interpolate between the measured points. The parametric technique has the advantages of providing 

information for the error diagnosis of the machine. However, this technique is time consuming, requires expensive 

equipment and special skill to operate that equipment, for instance a laser interferometer system. The transfer standard 

technique presents some limitations. First, it is difficult to manufacture mechanical artifacts that have the following 

proprieties: lightweight, high thermal stability, easy calibration and non-expensive. Second, various sizes of the 

standards are required for various machine sizes and the problem of storage, handling as well as transporting may also 

arise. Despite such limitations, the transfer standard technique has the advantage of getting measuring data very similar 

to the way in which the CMMs perform their measuring tasks (Silva and Burdekin, 2002).  Therefore, a critical need 

exists in order to overcome disadvantages that existing techniques to assess accuracy of three-axis CMMs present and 

most important it is necessary that a new technique to be capable of assessing the performance of five-axis CMMs. That 

new technique must be able to carry out the accuracy assessment of any type of five-axis CMM and it should require a 

minimum number of mechanical transfer standards and should be simple to use and measure. The literature survey 

shows that work in the area of five-axis machine is rather sparse. Among the existent works it can be mentioned: 

Srivastava et. al (1995) developed an analytical method, based on rigid body kinematics, to obtain the volumetric error 

at the tool throughout the workspace due to geometric and thermal errors of individual components on a five-axis CNC 

machine tool;  Florussen et. al. (2001) presented a method for assessing geometrical errors of multi-axis machines based 

on volumetric three-dimensional length measurements by using a double ball bar; Lei and Hsu (2003) used a 

measurement device called 3D probe ball to measure the position errors of five-axis machine tools. Lin and Shen (2003) 

developed and implemented a matrix summation approach for modeling the geometric errors of five-axis machine tools.  

Bring and Knapp (2006) developed a R-test, a new device for accuracy measurements on five-axis machine tool, which 

incorporates three kinematic ball bar; Terrier et. al. (2005) applied a double ball bar probe coupled with a plate 

equipped with three spheres to assessing a five-axis parallel kinematics milling machine. 
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2. DESCRIBING PARAMETRIC ERRORS OF FIVE-AXIS MACHINES. 

 

         The investigation of five-axis machine accuracy is a problem much more complex compared to investigating 

three-axis machine accuracy as extra sources of error are introduced by the added degrees of rotational freedom. The 

interaction of all of the axes complicates the relationship between the sources of error and the final error at the tool or 

probe tip.  Five-axis machines usually have both translational axes and rotational axes (Florussen et al., 2001). When   a 

five-axis machine moves on the machine guideway it will experience geometric errors as result of existing inaccuracy 

between the machine component and the guideway, figure 1.  In addition, it will experience geometric errors associated 

with the geometric inaccuracy of the two rotary stages, figure 1. Additionally, these rotary stages may be removable 

which further complicates the machining accuracy.  In this research, for convenience of notation, the translational errors 

are represented by δ and the angular errors by Є. In addition, two characters are used. The first one indicates the 

direction of the error and the second one indicates the direction of the movement. For instance, δx(y) means the 

straightness error component in the direction X when moving along the Y axis. 

         A five-axis machine has three translational axes. For each one six parametric errors are identified such as: 1 

positioning error (δx(x)), 2 straightness errors (δy(x), δz(x)) and 3 angular errors (roll, Єx(x); pitch, Єy(x); yaw, Єz(x)). 

Figure 1 shows these six parametric errors associated with a prismatic joint (X-axis). Similarly, there are positioning 

errors δy(y) and δz(z), straightness errors (δx(y), δz(y)) and (δx(z), δy(z)) as well as angular errors (roll, Єy(y); pitch, 

Єx(y); yaw, Єz(y) ) and (roll, Єz(z); pitch, Єx(z); yaw, Єy(z) ), along the Y and Z axes, respectively.  
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             Figure 1. Six parametric errors associated with a prismatic joint (X-axis) plus rotary stage errors 

 

         For a rotary joint, the nominal motion is the rotation about its axis. There are also six-degrees-of-freedom error 

motions associated with this type of joint, i.e., three translational errors and three rotational errors (Florussen et al., 

2001). As shown in figure 1, for the rotary stage the translational errors are: δxθ(θ) and δyθ(θ) radial errors in X and Y 

direction, respectively, and δzθ(θ) axial error in Z direction. The three angular errors are: Єxθ(θz) and Єyθ(θ) tilt errors 

about X and Y axis, respectively, and Єzθ(θ) angular positioning error. Similar geometric errors exist for the tilt stage 

too. When the multi-axis movement is introduced, the misalignment of each axis gives the squareness  or orthogonality 

error. In a generic five-axis machine seven squareness errors are defined. The planar squareness error, between X and Y 

axis, is defined as the out of squareness, α, between axes X and Y. The vertical squareness error, β1, is defined as the out 

of between the axes X and Z. The vertical squareness error, β2, is defined as the out of squareness between the axes Y 

and Z. By considering the rotary and tilt stages, a five-axis machine presents four more squareness errors. They are: αxθ 

and αyθ out of squareness of θ with the X and Y of the reference coordinate system, respectively (rotary stage); αyφ and 

αzφ out of squareness of φ with the Y and Z of the reference coordinate system, respectively (tilt stage). 

         Therefore, thirty-seven parametric error components have to be considered in a five-axis machine. They are 

fifteen translational errors, fifteen rotational errors and seven squareness errors. In order to determine the accuracy of 
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five-axis machines, basically, there are two approaches. One, as mentioned in the section 1, it is called parametric 

technique which consists in measuring all parametric error components of the machine, then, using the kinematic rigid 

body mathematical model of the machine to calculate the volumetric errors components. However, this technique is 

time consuming and very expensive, as it requires that all thirty seven parametric error components of a five-axis 

machine to be measured. Other approach that can be used to determine the machine accuracy is to measure the 

volumetric error components, directly, by using a reference artifact. In the first part of this research (Silva et al., 2009) a 

novel 3D artifact was developed and applied for assessing the accuracy of four-axis Coordinate Measuring Machines. 

The present research aims to extend that approach for five-axis Coordinate Measuring Machines. The novel 3D artifact 

that has been designed and developed will be described in the following section. 

 

3. USING A 3D SPACE FRAME FOR ASSESSING THE PERFORMANCE OF FIVE- 

   AXIS COORDINATE MEASURING MACHINES (CMMS).  

 
      In order to verify the performance of five-axis CMMs the novel form of space frame that was developed in the first 

part of this research (Silva et al., 2009) can be used. This 3D artifact comprises a ball plate that incorporates seven high 

accuracy spheres which diameter is approximately 19 mm (3/4”), figure 2.  Three spheres (2, 4 and 6) are located on the 

plate surface, the sphere 1 is on the central position and the other three spheres (3, 5 and 7) are set up on steel stems 

which are fixed to the plate. The main requirement that the spheres should meet is high accuracy in terms of shape. 

Also, the spheres must be resistant to wear and corrosion. This project incorporates chromium steel spheres whose 

sphericity is better than 0.1 µm.   Unlike the space frame proposed in previous work (Silva and Burdekin, 2002), the 

artifact developed in the present research does not have ball links. For that reason it is called virtual space frame. Also, 

it is not necessary to be calibrated as the self-calibration technique is applied. The important advantages of self-

calibration include the fact it does not require the preparation and maintenance of an accurate artifact or sensor systems 

(Lee and Ferreira, 2002).  
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                                                                  Figure 2. Proposed space frame 

     

 

3.1 Map  of  calibration points  

 
           The proposed 3D artifact can be rotated along the Z axis (angle θ) and along the X axis (angle φ) as can be seen 

in figure 1. The range of the angles θ and φ is from 0 to 360 and from  -90 to 90 degree, respectively. In order to 

establish the calibration map    which is generated by the proposed 3D artifact, a computer program has been developed.     

Basically, the input of that program consists of the measured coordinates of the center of the seven spheres at the initial 

position of the artifact for which the value of the angles θ and φ are assumed to be zero. Once the initial coordinates 

(X,Y,Z) of the center of the seven spheres are defined it is possible to calculate the nominal coordinates values of the 

seven spheres at any location of the artifact. The relation between the coordinates (X,Y,Z) of the spheres at the ith+1 

location and those at the ith location when the artifact is rotated by   θ and tilted by φ is given by: 

 

    [Ci+1]=[RotTilt]* [Ci]                                                                                                                                                    (1) 
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where,   

         the matrix, [Ci+1], represents the coordinates of the center of the spheres 1, 2, 3, 4, 5, 6 and  7 at the i+1 location of 

the artifact and is given by: 
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         the matrix, [Ci], represents the coordinates of the center of the spheres 1, 2, 3, 4, 5, 6 and 7 at the  i location of the 

artifact and is given by: 
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         The    [RotTilt] is the rotation and tilting matrix when the artifact is rotated along the Z axis, by an angle θ, and  

the artifact is tilted along the X axis, by an angle φ from the ith to the ith+1 location and is given by, 
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         The proposed space frame can be applied to any configuration of coordinate measuring machines as the only 

requirement is to establish a local reference system before getting the nominal coordinates of the center of the spheres in 

different locations of the proposed artifact defined by the angles θ and φ. By considering the practical application which 

was carried out in the first part of this research (Silva et al., 2009), figure 3,  the nominal coordinates (X, Y, Z) of the 

center of the seven spheres of the space frame, at initial location (θ=0, φ=0), are shown in table 1. 
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 Figure 3. Set up of the proposed space frame on the  CMM  under test. 

 

Table 1.  Nominal coordinates (X, Y, Z) of the spheres at location (θ=0, φ=0). 

Sphere X(mm) Y(mm) Z(mm) 

1 -0.0170 -0.2243 73.6373 

2 0.1266 -102.977 0.1119 

3 -88.1763 -51.6103 149.8827 

4 -88.4696 50.0995 -0.0242 

5 -2.3838 101.2081 150.2041 

6 86.5175 51.0002 0.0012 

7 88.7260 -52.6343 150.1732 

 

          The calibrated map of the points generated by the artifact when it is rotated from the position θ=0 to 0=360 at 

step=45 degree and tilted from position φ= -90 to φ= 90 at step=45 the points generated are shown in figure. Thus, by 

considering all locations after rotating and tilting the artifact the calibrated map is shown in figure 4.  
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Figure 4.  Location of points in the calibration map (space frame rotated and tilted) 
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4. APPLICATION OF THE PROPOSED TECHNIQUE TO EVALUATE THREE- 

    DIMENSIONAL UNCERTAINTY OF LENGTH MEASUREMENT 

 
     In this research a method to evaluate three-dimensional (3D) uncertainty of length measurement of an arbitrary type 

of CMM developed in the first part of this research (Silva et al., 2009) is applied. Primarily, the method consists in 

taking into account the nominal and measured dimensions distances of the points generated by the proposed space 

frame. To achieve this objective the following steps should be performed. First, the distances between the nominal 

points generated by the space frame are calculated. Second, the space frame is measured by the CMM under test. Third, 

the distances between the points generated by the measured space frame are calculated. Finally, the difference between 

the measured and nominal distances is calculated. That difference represents the 3D error of length measurement and is 

given by the following equation: 

 

  
nimii LLL −=∆                                                                                                                                                                       (2)  
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where, 

j=1,2, . . . , np-1           

k=1,2, . . ., np-j 

np = number of points generated by the space frame  

Xmj,Ymj,Zmj = measured co-ordinates of the points generated by the measured  

                        space frame. 

Xnj,Ynj,Znj =  nominal co-ordinates of the points generated by the space frame.  

Lmi =  ith measured length obtained by considering the co-ordinates of the points 

          generated by the measured modular space frame. 

=niL   ith nominal length obtained by considering the nominal co-ordinates of the points  

            generated by the space frame. 

 

     In this particular practical application, when the space frame is rotating from θ=0 to θ=360 deg., at step of 45 degree, 

and tilting from φ=-90 to φ=90, at step of 45 degree, 315 points are generated, as shown in figure 4. Thus, the number 

of distances (or lengths) that can be generated by these points is 49455 and is given by the following equation: 
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p

p

=
−
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                                                                                                                                                          (5)                                                                                                                                                                                                             

where, 

Nd=  number of distances or lengths (generated by the space frame) 

np!= factorial of np  

np=  number of  points generated by the space frame. 

 

        The figure 5 shows the frequency of the lengths generated by the space frame. As can be seen from this figure, a 

considerable number of lengths are generated by measuring the seven spheres that comprise the proposed space frame at 

different locations (θ, φ).  That is an important advantage of the proposed method in comparison to traditional methods, 

such as step gauge, to establish the uncertainty of length measurement of CMMs. Additionally, the space frame 

technique  is not time consuming, it does not require expensive equipment and special skill to operate and  it is 

particularly simple for acquiring data.  In this research a computer program has been developed in order to calculate the 

error of length measurement (∆L).  Figure 6 shows the 3D uncertainty of length measurement plotted against the 

measured distances which was obtained by measuring the proposed space frame. From this figure it can be seen that all 

errors of length measurement are within the linearized curves defined by the expression U=±(A+KL), According to 

British Standard (BS 6808, part 2).  This indicates that the CMM under test meets the manufacturer specifications. 
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Figure 5 Frequency of length sizes 
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 Figure 6. Three-dimensional uncertainty of length measurement 
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5. CONCLUSIONS. 

 

     This paper presented a new technique for performance analysis of five-axis coordinate measuring machines. 

Results showed that the proposed approach provides a practical, non-time consuming and cost effective technique to 

evaluate three-dimensional uncertainty of length measurement of these type of machines. Also, the volumetric 

performance test of a five-axis CMM has been established by comparing the nominal and measured coordinates of the 

points generated by the proposed space frame when it is located at different angular positions within the measuring 

volume of the machine under test. By rotating and tilting the 3D space frame for different locations, the number of 

points generated by the seven spheres of the space frame is 315. The number of distances (or lengths) that can be 

generated by these points is 49455. That is an important advantage of the proposed method in comparison to traditional 

methods, such as step gauge, to establish the uncertainty of length measurement of CMMs.  Further research work is to 

be carried out to extend the present approach for determining the parametric errors of the five-axis machine from the 

volumetric error components obtained by measuring the 3D space frame in different locations. 
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