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Abstract. The corotational (CR) kinematic description is the most recent of the formulations proposed for geometrically
nonlinear structural analysis. Because of this novelty, ithas not reached the same level of maturity of the older Lagrangian
formulations (Total and Updated). Much work remains to be done, particularly in material nonlinearities. Therefore, the
aim of this paper is to develop an efficient shell element for hyperelastic analysis with two important assumptions: (i)
strains from a corotated configuration are small while (ii) the magnitude of rotations from a base configuration is not
restricted. The assumed natural deviatoric strain (ANDES)three nodes triangular shell element is implemented for
hyperelastic material models and its application to different constitutive models is discussed. Results provided by the
proposed shell element are compared with the results presented by other authors in the literature in order to show the
adequacy of the presented theory and the effectiveness of the numerical procedure and shell element employed in this
work.
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1. INTRODUCTION

In the last decades, the application of problems which are subjected to large displacements and rotations, but on the
small strain domain increase. This covers important problems in several fields of the engineering because many structural
materials can experience only fairly small strain, such as,aerospace structures, bridges, ships, automobiles motor-cars,
sport material, etc.

In this context, the corotational (CR) kinematic description is viewed as an alternative way of deriving efficient non-
linear finite elements. The main idea of CR formulation is to decompose the motion of the element into rigid body and
pure deformational parts, through the use of a reference system, which continuously rotates and translates with the ele-
ment (Felippa, 1992). The term “corotational”, also call “co-rotational” in the literature, relates here to the provision of
a local system that continuously rotates and translates with the element, the definition of an element retraces to a change
of variables from the local frame to the global one. This is done through the use of a projector matrix which relates the
variations of the local displacements to the variations of the global ones, by extracting the rigid body modes from the
latter.

The CR domain of application is limited bya priori kinematic assumptions, i. e., displacements and rotationsmay be
arbitrarily large, but deformations must be small. Becauseof this restriction, corotational formulation has not penetrated
the major general-purpose FEM codes that cater to nonlinearanalysis. However, recent works provided by Felippa and
co-workers, shows that the main interest of the corotational approach compared to the total Lagrangian (TL) one is that
the transformation matrices are independent on the assumptions made for the local elements. This means that for elements
with the same number of nodes and degrees of freedom, the corotational framework is the same. Consequently, many
advantages of CR over TL description appears: (1) reuse of small-strain elements including materially nonlinear elements;
(2) decouples small-strain material nonlinearities from geometric nonlinearities; (3) handles naturally the question of
frame indifference of anisotropic behavior due to materialnonlinearities (hyperelasticity, plasticity, creep). The rigid body
transformation reorients automatically the material directions as long as strains remain small. This attribute eliminates the
need to work with the cumbersome invariant stress rates of continuum mechanics and (4) is well suited to the treatment of
structural elements with rotational degrees of freedom (beams, plates, shells) for arbitrarily large rotations. Suchelements
are notoriously difficult to treat with the TL description.

It is relevant to mention that because of the newness of CR description, many problems involving nonlinearities are
unsolved. Materials for which the constitutive behavior isonly a function of the current state of deformation are generally
known aselastic. Under such conditions, any stress measure is a function of the current deformation gradient associated
with that particle. However, in the special case when the work done by the stresses during a deformation process is
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dependent only on the initial state at timet0 and the final configuration at timet, the behavior of the material is said to be
path-independent and the material is calledhyperelastic.

A variety of efforts have been pursued over the past few decades to model the effective behavior of hyperelastic
materials. Therefore, there are many hyperelastic constitutive models available in the literature. In order to explore
the differences in their responses, the kinematic Consistent Simetrizable Equilibrated (CSE) corotational formulation
and the Assumed Natural Deviatoric Strain (ANDES) three nodes triangular linear elastic shell finite element and the
arch-length method joined with Newton-Raphson strategy (geometrically nonlinearity) are used. As an extension to
acomodate the phisically nonlinearity (hyperelasticity), the material is assumed to be isotropic, incompressible Neo-
Hookean hyperelastic solid.

2. COROTATIONAL FORMULATION

2.1 Shell element kinematics

The corotational description used in this work is fullly reviewed in many papers – Battini (1990), Pacoste and Felippa
(1991), Felippa and Alexander (1992), Militello (1998), etc. For this reason, the CR kinematics used herein is briefly
described. The key CR operation is to extract the deformational components of the translations and rotations for each
node (Fig. 1), since the model is based on large displacements and rotation, however, in small-strain domain. Therefore,
its is necessary to establish the deformational displacements vector in local frame (̄ve

d), which stores the translational and
rotational degrees of freedom for each node of the element:

v̄e
d = [v̄e

d1 · · · v̄e
dNe ]

T
, with v̄e

da =

[
ūe

da

θ̄e
da

]

, for a = 1, . . . , Ne (1)

wherea computes a nodal indice,Ne is the number of nodes in elemente and the overbar represents that vector is based
on local CR frame. In addition,̄ue

da andθ̄e
da are the translational and rotational degrees of freedom of the element at node

a, respectively.
In order to understand the key-concept of the corotational description, Fig. 1(a) shows a bar element moving in 2D

space and how the total motion is separated. Figure 1(b) depicts a facet shell element, which moves from the initial
position given by the position vectorr0 to the deformed position given by the position vectorrd.
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Figure 1. Basic concepts of the CR kinematic description, focusing on the separation of the total motion.

From the Fig. 1(b), the nodal displacements vector is computed from the initial configurationC 0:

u = rd − r0 (2)

The displacement vector may be splits into rigid body displacement and deformational deformational as:

u = ur + ud (3)

The rigid body displacementur take place from initialC 0 to corotatedC R configuration. The deformational displace-
mentud is a vector joining points inC R andC D. Taking into account geometrical considerations concerned to initial,
corotated and current configurations and after tedious algebric manipulations, the vectors are calculated as follow:

ur = uC + (R − I)x0 and ud = u − uC − (R − I)x0 (4)
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whereI is the 3×3 identity matrix andR is the rotation tensor of a shell element node which is used tomap the initialC 0

to the finalC D configuration and it is given by:

R = RdR0, with R0 = TT
RT0 (5)

whereT0 andTR represent the linear transformation matrix from base element frame to global one and the element CR
frame to global frame, respectively.

The rotation matrixRd represents the deformational rotation andR0 is the rigid body rotation. Hence, this deforma-
tional spin may expressed in local CR frame as:

R̄d = TRRdT
T
R (6)

The rotations inR3 are not commutative like they are inR2, because the in-plane rotation is defined by a scalar and
the spatial rotation is described by both magnitude: the angle of rotation and its direction (Alvinet al., 1992). For this
reason, rotations in 3D space are sometimes pictured as vectors, however, finite 3D rotations do not obey the laws of
vector calculus. The complete procedure to extractθ̄ given by Eq. (1) of theR is demonstrated by Fellipa and Haugen
(2005). Formally, this is̄θd =Axial

[
log
(
R̄d

)]
. Finally, the vectors̄ud andθ̄d are ready to be used in Eq. (1).

2.2 Degrees of freedom

The shell element used in this study is a triangular facet element shown in Fig. 2, with 18 degrees of freedom (6 per
node: three rotations and three displacements). The displacements along the coordinate lines of a material point is defined
by ux, uy anduz. θx andθy are rotations of the normal about thex− andy− axes, respectively, andθz is the drilling
degree of freedom introduced by Rankin and Brogan (1986). These DOFs are the same employed in Eq. (1).
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Figure 2. Node and freedom configuration of the facet shell triangle.

The geometry of the element is defined by theNe coordinatesx0
a, with a = 1, . . . , Ne at the initial configuration. The

computation of the element centroid is done by simply averaging the coordinates of the element nodes, i. e.,

xe
C0 =

1

Ne

Ne

∑

a=1

xe
a (7)

The algorithm to compute all displacements and rotations isgiven by Felippa and Haugen (2005).

2.3 Tangent stiffness matrix

The consistent tangent stiffness matrixKe of elemente is defined as the variation of the internal forcespe with respect
to element global freedomsve:

δpe def
=

∂pe

∂ve
δve = Keδve (8)

The element internal force vectorpe is given by Pacoste and Felippa (1991) and it is defined as the rate of the internal
energy. This yields:

pe = TT P̄T H̄T p̄e (9)

whereP̄ andH̄ are the projection operators. The first ensure the equilibrium of the internal force vector and the letter acts
on the rotate degrees of freedom of the element in order to ensure symmetry of the consistent tangent stiffness matrix, for
details about those matrix see Felippa (1992) and Cortivo (2009).
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Cosidering Eqs. (8) and (9) give:

δpe =

1
st term

︷ ︸︸ ︷

δTT P̄T H̄T p̄e +

2
nd term

︷ ︸︸ ︷

TT δP̄T H̄T p̄e +

3
rd term

︷ ︸︸ ︷

TT P̄T δH̄T p̄e +

4
th term

︷ ︸︸ ︷

TT P̄T H̄T δp̄e (10)

Now, the superscript (·)e, which represents the local frame, is going to be omitted andcomparing Eqs. (8), (9) and (10)
the consistent tangent stiffness matrix obtained by CR formulation is:

K = KGR + KGP + KGM + KM (11)

whereKGR is the rotational geometric stiffness, which represents the gradient of the internal force vector with respect
to the rigid rotation of the element;KGP is the equilibrium projection geometric stiffness, which expresses the variation
of the projection of the internal force vector as the elementgeometry changes;KGM is the moment correction geometric
stiffness, which is generated by the variation of the JacobianH; andKM is the material stiffness of the element, which
expresses the variation of the element internal forces.

The completely procedure to obtain these matrix is described in Felippa and Haugen (2005). In this paper, their are
just defined as:

KGR = −TT F̄nmḠT, KGP = −TT ḠT F̄nP̄T, KGM = TT P̄T L̄P̄T, KM = TT P̄T H̄T K̄eH̄P̄T (12)

whereF̄nm andF̄n are the skew-symmetric spin matrices relative to axial forcesn̄ and bending moments̄m at node 1
and so on, respectively, and they are given by

F̄nm =










Spin (δn̄e
1)

Spin (δm̄e
1)

...
Spin (δn̄e

Ne)
Spin (δm̄e

Ne)










and F̄n =






Spin (δn̄e
1)

...
Spin (δn̄e

Ne)




 (13)

In addition, the matrix̄G connects the variation in rigid element spin to the incremental translations and spins at the
nodes, both with respect to the CR frame and can be written according Felippa and Haugen (2005) as:

Ḡ =
1

2A





0 0 xC
32 0 0 0 0 0 xC

13 0 0 0 0 0 xC
21 0 0 0

0 0 yC
32 0 0 0 0 0 yC

13 0 0 0 0 0 0 0 0 0
0 −2A

L3

0 0 0 0 0 2A
L3

0 0 0 0 0 0 0 0 0 0





3×18

(14)

whereA is the triangle area, andL3 is the length of side12 of the triangle.
Also, theK̄ is the material linear elastic tangent stiffness matrix of the element and according to the ANDES formu-

lation results:

K̄ = Kb + Kh (15)

HereKb andKh are calledbasicandhigher-orderstiffness matrices, respectively.Kb is formulation independent in
that it is entirely defined by an assumed constant stress together with an assumed boundary displacement field and it is
given by:

Kb =
1

A
LCLT (16)

whereA is the shell element area,C is the stress-strain constitutive matrix andL is the matrix which has the deformational
field of the element, and also is responsible for the stress lumping at nodes of the element. For brevity, this matrix can be
found in Felippa and Haugen (2005).

Kh can be formed using several different formulations, in thiswork it will be use the Assumed Natural Deviatoric
Strains (ANDES) formulation. The procedure for constructing the higher-order stiffness can be found in several sources
as:

Kh =

∫

A

BT
d CBd dA (17)

whereBd represents the deviatoric curvatures or deviatoric extensions. Thus, substituting (16) and (17) into (15) yields:

K̄ =
1

A
LCLT +

∫

A

BT
d CBd dA (18)
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3. HYPERELASTIC FORMULATION

3.1 Preliminary concepts

There are many hyperelastic constitutive models availablein the literature, in this paper the model showed by Simo
and Hughes (1998) is used. LetB ⊂ R

3 be the reference configuration of the body of interest. Assuming thatB is open
and bounded with smooth boundary∂B and closureB̄ := B ∪ ∂B. Let [0, T] ⊂ R+ be the time interval of interest, and
let u : B̄× [0, T] → R

3 be the displacement field of particles with reference position x ∈ B at timet ∈ [0, T]. The
infinitesimal strain tensor in terms of the displacement field is given by:

ε =
1

2

[

∇u + (∇u)
T
]

=
1

2
(ui,j + uj,i) ei ⊗ ej (19)

where⊗ denotes a tensor product. Second-order symmetric tensors are linear transformations inS, defined as

S :=
{
ξ : R

3 → R
3|ξ is linear, andξ = ξT

}
(20a)

This is a vector space with inner product,

ξ : ξ = tr(ξT ξ) ≡ ξijξij (20b)

where tr(·) is the trace of the tensor into parenthesis, which is defined as the sum of the diagonal components.
The simplest model for a constitutive equation is provided by a hyperelastic material, for which the stress response is

characterized in terms of a stored energy functionW : B × S → R, such that:

σ(x) =
∂W [x, ε(x)]

∂ε
(21)

which is an expression of the stress tensor. This tensor can be written in function of the constitutive material behavioras:

σ = Cε, with C =
∂2W [x, ε(x)]

∂ε2
, in components:Cijkl =

∂2W

∂εij∂εkl

(22)

Remark 1. It is assumed thatC is positive-definite restrict toS and symmetric, i. e.,Cijkl = Cklij = Cijlk = Cjilk .

3.2 Frame indifference

Recalling that the constitutive equation for a hyperelastic material is defined in terms of a stored-energy function which
depends on the deformation locally only through the deformation gradient, that is, a functionW [x,F(x, t)] is given such
that,

P(x, t) = 2F
∂W

∂C
, S = 2

∂W

∂C
and τ = 2F

∂W

∂C
FT (23)

whereP andS represent the first and the second Piola–Kirchhoff stress tensor, respectively;F is the deformation gradient,
which is the derivative of the deformation;C is the right Cauchy-Green deformation tensor, which is given byC = FTF;
andτ is the Kirchhoff stress tensor. Therefore, the stored-energy functionW (x,F) is said to be objective or frame
indifferent.

3.3 Isotropic hyperelasticity

Isotropy is defined by requiring the constitutive behavior to be identical in any material direction. This implies that
the relationship between strain energyW andC must be independent of the material axes chosen and, consequently,W
must only be a function of the invariants ofC as:

I1 := tr(C) =
3∑

i=1

Cii = C11 + C22 + C33 (24a)

I2 :=
1

2

[
I2
1 − tr(C2)

]
=

3∑

i=1

C2
ii = C2

11 + C2
22 + C2

33 (24b)

I3 := det(C) =
3∏

i=1

Cii = C11C22C33 (24c)



Proceedings of COBEM 2009
Copyright c© 2009 by ABCM

20th International Congress of Mechanical Engineering
November 15-20, 2009, Gramado, RS, Brazil

where the componentsCii are precisely derived from the eigenvalues problem. Now, using the following relationships:

∂I1

∂C
= I,

∂I2

∂C
= I1I− C and

∂I3

∂C
= I3C

−1 (25)

and the constitutive Eqs. (23), the symmetric Piola–Kirchhoff tensor becomes:

S = 2

(
∂W

∂I1

+
∂W

∂I2

I1

)

I − 2
∂W

∂I2

C + 2
∂W

∂I3

I3C
−1 (26)

Using the relationτ = FSFT , the following constitutive equation for the Kirchhoff stress is obtained,

τ = 2

(
∂W

∂I3

I3

)

I + 2

(
∂W

∂I1

+
∂W

∂I2

I1

)

b− 2
∂W

∂I2

b2 (27)

whereb = FFT is the left Cauchy-Green deformation tensor.

3.4 The hyperelastic CR approach

Consistent with the assumption of isotropy and the notion ofan intermediate stress-free configuration, the stress
response by a stored-energy function is characterized by:

W = U(Je) + W̄ (b̄e), with b̄e := Je
−

2

3

FeFeT

≡ Je
−

2

3

be (28)

whereU : R+ → R+ ∪ {0} is a convex function ofJ := det(Fe) and the volumetric and deviatoric parts ofW are
represented byU(Je) andW̄ (b̄e), respectively, and their relations are defined as:

U(Je) :=
1

2
κ

[
1

2

(

Je2

− 1
)

− log
e
Je

]

and W̄ (b̄e) :=
1

2
µ
[
tr
(
b̄e
)
− 3
]

(29)

whereµ > 0 and κ > 0 are interpreted as the shear and bulk modulus, respectively. The definition ofb̄e yields
det(b̄e) = 1, hence, the denomination of the deviatoric part assigned toW̄ . Also,

tr(b̄e) = tr(C̄e), where C̄e := Je
−

2

3

FeT

Fe (30)

Finally, letW = U(Je) + Ŵ (C̄e) and comparing (28) and (30),̄W (b̄e) = Ŵ (C̄e). Then the Kirchhoff stress tensor
is obtained by the general expression:

τ = 2Fe ∂W

∂Ce
FeT

= JeU ′(Je)I + s, where s = 2 dev

(

F̄e ∂Ŵ

∂C̄e
F̄eT

)

(31)

where dev(·) denotes the deviatoric part of(·). Note that the uncoupled, stored-energy function (28) results in uncoupled
volumetric-deviatoric stress-strain relationships, which is very important to CR approach. From the Eqs. (30) and (29),

τ = JepI + s (32a)

p : = U ′(Je) =
κ
(

Je2

− 1
)

2Je
(32b)

s : = dev(τ ) = µ dev(b̄e) (32c)

Note thatU(J) → +∞ andp → ±∞, asJ → 0 andJ → ∞. Further, it can easily show that Eq. (32) reduces,
for small strains, to the classical isotropic model of the linearized theory. In the computational context, the hyperelastic
constitutive model (32) evaluated at timetn+1 yields:

τn+1 = Je
n+1pn+1I + sn+1 (33a)

pn+1 : = U ′(Je
n+1) (33b)

sn+1 : = µ dev(b̄e
n+1) (33c)

This is a main part of the the full algorithm described in Simoand Hughes (1998) with porpose to abridge this paper.
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4. NUMERICAL STUDIES

In order to examinate the response from the considered hyperelatic model, a set of numerical comparison between
the hyperelastic model presented in the literature and the model described in the preceding section is performed. The
objective is to provide a set of simple yet representative test problems with well established numerical results. The
important restriction of the CR formulation showed throughthis paper is in the fact that the displacements and rotations
are large, although the strains are small. Thus, the hyperelastic model presented in this paper regards this limitation.

4.1 A simple patch test

The first example is a simple plane-stress tension test (see Fig. 3). The problem consists of a square hyperelastic plate
under two axial concentrated loads applied at the free corners. The mechanical properties and dimensions of the plate
are the following: Young’s modulusE = 1.0 × 106; Poisson’s ratioν = 0.3; sideL = 10.0 and side-to-thickness ratio
L/h = 10. Figure 3(b) shows the simple mesh implemented in order to avaliate the model.
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Figure 3. A simple plane stress axial test.

To solve a system of nonlinear algebric equations, different strategies is employed, such as the cylindrical arc-lenght
method, the normal plane method of Riks-Wempner and the updated normal plane method of Ramm. All these three
strategies were combined with the full Newton-Raphson method in order to control progress along the equilibrium path.
Therefore, the iteration process is continued until the difference between the update configuration and the previous one
reduces to a preselected error tolerance, which isǫ 6 10−6, is adopted and results are obtained using 20 load steps for
this first application.

Remark 2. For details of the strategies used to solve the nonlinear system, see Haugen (1994).

Figure 4 depicts the gradual development of the axial displacement with the load increase. The continuous line
represents the deformed configuration at each load step.

step 1 step 10 step 20

Figure 4. Deformed configuration through analyses.

The finite element solution is compared with Toscano and Dvorkin (2007) and Fig. 5 clearly shows very good agree-
ment of the model proposed. To the first load step, for example, the axial displacement obtained by Toscano and Dvorkin
(2007) was 0.16 while the CR hyperelastic element gives 0.12, i. e., a percentual difference of the 0.75%. To the last load
step, this diffefence increase to 0.998%.

4.2 Cantilever under constant moment

The next example is described in Fig. 6. The initially-straight cantilever is clamped at one end (all displacements zero)
and loaded by a constant momentM at the other end. The analytical solution corresponds to a beam rolled up into a
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circular arc of radiusR given by:

1

R
=

M

EI
(34)

In order to test the singularity-free nature of the present element, it is investigated the case in which the beam rolled
up into a complete circle (θ = 2π) using a mesh of 20 elements. This example does not test the full three-dimensional
behaviour but, in two-dimensions, is a severe test of inextensional bending. The material and geometrical properties are
choosen asE = 1.2 × 107, L/b = 10, L/h = 100 andν = 0.
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Figure 6. Initial geometry for cantilever subject-to-end moment and the discretization of the problem.

The analysis is performed using 20 elements with uniform 10×1 mesh. The solution is obtained using six equal steps
of ∆M = M

6
. At each step, convergence was achieved toǫ 6 10−4 in three iterations. Figure 7 depicts all steps of

the analyses and the rotation versus moment applied. Compared to the analytical solution, the element CR formulation
underpredicts rotations by 1.32% while the element proposed in Toscano and Dvorkin (2007) overpredicts by about 1.84%.
Hence, the present element displays better results then other element, although this difference was very small.

Remark 3. In this example, the applied nodal moment load is choosen because it is non-conservative. The “standard”
corotational formulations are usually not able to solve problems with non-conservative loads, but the element proposed
is in excellent agreement with the solution obtained by Toscano and Dvorkin (2007) and the analitycal solution.
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Figure 7. Initial and deformed geometries for cantilever under constant moment and the convergence of the solutions.

4.3 Hemispherical isotropic shell

The next case shown in Fig. 8 refers to the pinched hemispherical shell with a 18◦ hole. The loads are two pairs of
inward and outward point loads, 90◦ apart. This analysis is used as a test case in many previous publications because its
highly warped shell problem. To give good results for these problems, two properties must be demonstrated by the CR
hyperelastic shell element: an inextensional-bending mode must be allowed and secondly, a rigid body motion must be
well expressed. For symmetry reasons, the problem is modeled using only one quarter of the hemisphere. The material
properties areE = 6.825 × 107 andν = 0.3, the radius isR = 10 and the thickness ish = 0.04.
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Figure 8. Pinched hemispherical shell with a 18◦ hole.

The problem is solved using three uniform meshes; namely, 4×4, 8×8 and 16×16 with 32, 128 and 512 elements,
respectively. The plot of a pinching load values versus the displecement under the corresponding applied load is shown
in Fig. 9. The three top curves correspond to the displacements undery direction, while the lower curves represent the
displacements underx axis, see Fig. 9(a). The results obtained using either of thethree meshes, are in excellent agreement
with the results reported by Simoet al. (1990). In a poor mesh, the difference between present element and the element
proposed by Toscano and Dvorkin (2007) is hardly noticeable. Figure 9(b) helps to demonstrate the behavior of the
solutions.

Figure 10 shows the deformed mesh configuration (16×16) and this computation was carried out in 5 iterations. This
represents a half of iterations obtained by Simoet al. (1990) for the same mesh.
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Figure 9. The displacement-load plots for the different models of the pinched hemisphere analysis.
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5. SUMMARY AND CONCLUSIONS

The paper has described the development of the corotationaltriangular shell element for hyperlastic materials. The
ANDES approach found in the literature, has been used as local formulation. Three numerical applications have shown
that the proposed element can be used to analyse problems presenting large displacements and rotations, but small strains.
If this assumption is violated for a coarse discretization,it is necessary break it into more elements. For this reason,in the
context of hyperelasticity, the model must be incompressible Neo-Hookean solid.

A excellent agreement with analytical and numerical results have been obtained with fine and coarse meshes, and also
with distorted elements. It can be concluded that it is advantageous to use CR description because using the described
corotational framework, efficient linear elements are automatically transformed to nonlinear formulations.
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