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Abstract. The corotational (CR) kinematic description is the mosergof the formulations proposed for geometrically
nonlinear structural analysis. Because of this noveltyai$ not reached the same level of maturity of the older Lagjean
formulations (Total and Updated). Much work remains to baajgarticularly in material nonlinearities. Thereforéet
aim of this paper is to develop an efficient shell element jqrelelastic analysis with two important assumptions: (i)
strains from a corotated configuration are small while (liletmagnitude of rotations from a base configuration is not
restricted. The assumed natural deviatoric strain (ANDESge nodes triangular shell element is implemented for
hyperelastic material models and its application to difer constitutive models is discussed. Results providetdy t
proposed shell element are compared with the results pteddsy other authors in the literature in order to show the
adequacy of the presented theory and the effectivenesg afutinerical procedure and shell element employed in this
work.
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1. INTRODUCTION

In the last decades, the application of problems which abogested to large displacements and rotations, but on the
small strain domain increase. This covers important probli several fields of the engineering because many stalctur
materials can experience only fairly small strain, suchaaspspace structures, bridges, ships, automobiles matey-
sport material, etc.

In this context, the corotational (CR) kinematic descdptis viewed as an alternative way of deriving efficient non-
linear finite elements. The main idea of CR formulation is éz@mpose the motion of the element into rigid body and
pure deformational parts, through the use of a referendersysvhich continuously rotates and translates with the ele
ment (Felippa, 1992). The term “corotational”, also cab-iotational” in the literature, relates here to the prmnsof
a local system that continuously rotates and translatésthvt element, the definition of an element retraces to a éhang
of variables from the local frame to the global one. This is@lthrough the use of a projector matrix which relates the
variations of the local displacements to the variationshef global ones, by extracting the rigid body modes from the
latter.

The CR domain of application is limited kaypriori kinematic assumptions, i. e., displacements and rotatiasbe
arbitrarily large, but deformations must be small. Becaafddis restriction, corotational formulation has not peated
the major general-purpose FEM codes that cater to nonlaneaysis. However, recent works provided by Felippa and
co-workers, shows that the main interest of the corotatiapproach compared to the total Lagrangian (TL) one is that
the transformation matrices are independent on the asgumsphade for the local elements. This means that for elesnent
with the same number of nodes and degrees of freedom, théatoral framework is the same. Consequently, many
advantages of CR over TL description appears: (1) reuse af-stnain elements including materially nonlinear elernse
(2) decouples small-strain material nonlinearities froeometric nonlinearities; (3) handles naturally the questf
frame indifference of anisotropic behavior due to matergailinearities (hyperelasticity, plasticity, creep).€ligid body
transformation reorients automatically the materialcicns as long as strains remain small. This attribute elitas the
need to work with the cumbersome invariant stress ratesrafraaum mechanics and (4) is well suited to the treatment of
structural elements with rotational degrees of freedorarfise plates, shells) for arbitrarily large rotations. Selements
are notoriously difficult to treat with the TL description.

It is relevant to mention that because of the newness of CRBrigeion, many problems involving nonlinearities are
unsolved. Materials for which the constitutive behaviasridy a function of the current state of deformation are galher
known aselastic Under such conditions, any stress measure is a functidmeaturrent deformation gradient associated
with that particle. However, in the special case when thekwdmne by the stresses during a deformation process is
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dependent only on the initial state at timgeand the final configuration at timtethe behavior of the material is said to be
path-independent and the material is calggerelastic

A variety of efforts have been pursued over the past few decaal model the effective behavior of hyperelastic
materials. Therefore, there are many hyperelastic cotiggt models available in the literature. In order to explor
the differences in their responses, the kinematic ComgiSanetrizable Equilibrated (CSE) corotational formidat
and the Assumed Natural Deviatoric Strain (ANDES) threeasadiangular linear elastic shell finite element and the
arch-length method joined with Newton-Raphson strategpifgetrically nonlinearity) are used. As an extension to
acomodate the phisically nonlinearity (hyperelastigithle material is assumed to be isotropic, incompressible- Ne
Hookean hyperelastic solid.

2. COROTATIONAL FORMULATION
2.1 Shell element kinematics

The corotational description used in this work is fullly imved in many papers — Battini (1990), Pacoste and Felippa
(1991), Felippa and Alexander (1992), Militello (1998);.efor this reason, the CR kinematics used herein is briefly
described. The key CR operation is to extract the deformatioomponents of the translations and rotations for each
node (Fig. 1), since the model is based on large displacenagut rotation, however, in small-strain domain. Therefore
its is necessary to establish the deformational displanéswector in local frames(;), which stores the translational and
rotational degrees of freedom for each node of the element:

7€
Vo=V - vgNe]T, with v§, = [gga], for a=1,...,N¢ 1)
da

wherea computes a nodal indic&y ¢ is the number of nodes in elemenand the overbar represents that vector is based
on local CR frame. In additiora¢, and@, are the translational and rotational degrees of freedoimeoélement at node
a, respectively.

In order to understand the key-concept of the corotatioaatdption, Fig. 1(a) shows a bar element moving in 2D
space and how the total motion is separated. Figure 1(brtepifacet shell element, which moves from the initial
position given by the position vectof to the deformed position given by the position veatgr

Instantaneous
rotation axes

[ Total motion = rigid + deformational ]

Corotated, &% . Element CR frame

Element Deformed, @
base
frame

Current (deformed), #?

Deformational

motion
Initial (undeformed), @’
Rigid body motion
Global
frame
X Y
(a) Bar element moving in 2D space (b) Facet shell element moving in 3D space

Figure 1. Basic concepts of the CR kinematic descriptiocii$ing on the separation of the total motion.

From the Fig. 1(b), the nodal displacements vector is coatpfriom the initial configuratiof”:

R ©)
The displacement vector may be splits into rigid body disptaent and deformational deformational as:

u=u, +uy 3

The rigid body displacement, take place from initia”° to corotateds’® configuration. The deformational displace-
mentuy is a vector joining points ir’® and%¢’?. Taking into account geometrical considerations conaktaenitial,
corotated and current configurations and after tediousalgmanipulations, the vectors are calculated as follow:

u,=uc+(R-Dx° and uyy=u—-uc - (R-I)x° 4)
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wherel is the 3x 3 identity matrix andR is the rotation tensor of a shell element node which is usesdp the initiaks™
to the final’? configuration and it is given by:

R = R4Ry, with Ry =TET, (5)

whereT, andT i represent the linear transformation matrix from base etetiname to global one and the element CR
frame to global frame, respectively.

The rotation matrixR 4 represents the deformational rotation dglis the rigid body rotation. Hence, this deforma-
tional spin may expressed in local CR frame as:

R, = TrR,Th (6)

The rotations ifR? are not commutative like they are R?, because the in-plane rotation is defined by a scalar and
the spatial rotation is described by both magnitude: thdeaofgrotation and its direction (Alvirt al., 1992). For this
reason, rotations in 3D space are sometimes pictured agrgebbwever, finite 3D rotations do not obey the laws of
vector calculus. The complete procedure to extéagiven by Eq. (1) of theR is demonstrated by Fellipa and Haugen
(2005). Formally, this i®,; =Axial [log (R4)]. Finally, the vectorsi; andé, are ready to be used in Eq. (1).

2.2 Degreesof freedom

The shell element used in this study is a triangular facehefd shown in Fig. 2, with 18 degrees of freedom (6 per
node: three rotations and three displacements). The displents along the coordinate lines of a material point isiddfi
by u,,u, andu,. 6, andd, are rotations of the normal about the- andy— axes, respectively, artl is the drilling
degree of freedom introduced by Rankin and Brogan (1986s&IDOFs are the same employed in Eq. (1).

z Local coordinate system

Z
1<Y

X
Global b
coordinate  DOF per node 2
system

Figure 2. Node and freedom configuration of the facet shatgle.
The geometry of the element is defined by fiecoordinates!, witha = 1, ..., N¢ at the initial configuration. The

computation of the element centroid is done by simply avegathe coordinates of the element nodes, i. e.,

1 &
Xeco = Ne ;Xz (7)
The algorithm to compute all displacements and rotatiogs/isn by Felippa and Haugen (2005).

2.3 Tangent stiffness matrix

The consistent tangent stiffness maiiix of element is defined as the variation of the internal forggswith respect
to element global freedoms':

0
0

The elementinternal force vectpf is given by Pacoste and Felippa (1991) and it is defined asthef the internal
energy. This yields:

5ﬁgiW:WW 8)

pe — TTI_)TIfITI—)e (9)

whereP andH are the projection operators. The first ensure the equilibof the internal force vector and the letter acts
on the rotate degrees of freedom of the element in order tareisymmetry of the consistent tangent stiffness matrix, fo
details about those matrix see Felippa (1992) and Corti9og2
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Cosidering Egs. (8) and (9) give:
1% term 2" term 3 term 4™ term

6p¢ =T PTH p° + TTsPTHp* + TTPTsH p° + TP H” 6p° (10)

Now, the superscript)¢, which represents the local frame, is going to be omittedcamaparing Egs. (8), (9) and (10)
the consistent tangent stiffness matrix obtained by CR ation is:

K =Kgr+Kgp +Kaom +Kur (11)

whereK ¢y is the rotational geometric stiffness, which represergsgitadient of the internal force vector with respect
to the rigid rotation of the elemenK . p is the equilibrium projection geometric stiffness, whictpeesses the variation
of the projection of the internal force vector as the elenggametry change® s, is the moment correction geometric
stiffness, which is generated by the variation of the JammoH; and K, is the material stiffness of the element, which
expresses the variation of the element internal forces.

The completely procedure to obtain these matrix is desgribéelippa and Haugen (2005). In this paper, their are
just defined as:

Ker = -TT'F,,.GT, Kgp=-TI'GTF,PT, Kgy =TTPTLPT, K, =T PTHT'K‘HPT (12)

whereF,,,,, andF,, are the skew-symmetric spin matrices relative to axialdsefcand bending momenis at node 1
and so on, respectively, and they are given by

Spin (0n§)
Spin (dm$) Spin (6n§)
Fom = : and F, = : (13)
Spin (60%;.) Spin (001%;.)
Spin (0m$;.)

In addition, the matrixG connects the variation in rigid element spin to the incret@emanslations and spins at the
nodes, both with respect to the CR frame and can be writtesrdiey Felippa and Haugen (2005) as:

L oo % 0 0 00 0 25 00 0 0 0 25 0 0 0O

G:ﬂoo%%oooooygooooooooo (14)
0 =22 0 000022 0 00000 0 000
3 3 3x18

whereA is the triangle area, ank; is the length of sid@2 of the triangle.
Also, theK is the material linear elastic tangent stiffness matrixhef ¢lement and according to the ANDES formu-
lation results:

K=K, +Kj (15)

HereK, andK,, are callethasicandhigher-orderstiffness matrices, respectivell, is formulation independent in
that it is entirely defined by an assumed constant stresshtegeith an assumed boundary displacement field and it is
given by:

K, = Lrerr (16)
A

whereA is the shell element are€ is the stress-strain constitutive matrix d@s the matrix which has the deformational
field of the element, and also is responsible for the streapilng at nodes of the element. For brevity, this matrix can be
found in Felippa and Haugen (2005).

K}, can be formed using several different formulations, in thésk it will be use the Assumed Natural Deviatoric
Strains (ANDES) formulation. The procedure for constmgtihe higher-order stiffness can be found in several ssurce
as:

K, = / BICB,dA (17)
A
whereB, represents the deviatoric curvatures or deviatoric eidess Thus, substituting (16) and (17) into (15) yields:
_ 1 '
K= ZLCLT + / BICB,dA (18)
A
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3. HYPERELASTIC FORMULATION
3.1 Preliminary concepts

There are many hyperelastic constitutive models availabiee literature, in this paper the model showed by Simo
and Hughes (1998) is used. LBtC R? be the reference configuration of the body of interest. Assgrihat3 is open
and bounded with smooth boundat and closure3 := B U 9B. Let [0, T] C R, be the time interval of interest, and
letu : Bx [0, T] — R? be the displacement field of particles with reference pmsiti € B at timet < [0, T]. The
infinitesimal strain tensor in terms of the displacementfiglgiven by:

1 1
e=3 [Vu + (Vu)T =3 (uij+uji)e; ®e; (19)

where® denotes a tensor product. Second-order symmetric tensolis@ar transformations i®, defined as
S:= {¢:R® - R®|¢is linear, ang = ¢7'} (20a)
This is a vector space with inner product,
£:6=1r(€7¢) = &8y (20b)

where tf-) is the trace of the tensor into parenthesis, which is defised@sum of the diagonal components.
The simplest model for a constitutive equation is providge hyperelastic material, for which the stress response is

characterized in terms of a stored energy funclion B x S — R, such that:

_ OW [x,e(x)]

N Oe

which is an expression of the stress tensor. This tensorearilien in function of the constitutive material behavésr

o(x) (21)

O?W [x,e(x)] 0PW

o=Ce, with C= 9e2 , incomponentsC;;i; = (22)

aé‘ija&‘kl
Remark 1. Itis assumed thaf is positive-definite restrict t8 and symmetric, i. €G;;x = Criij = Cijik = Cjitk-
3.2 Frameindifference

Recalling that the constitutive equation for a hyperetastaterial is defined in terms of a stored-energy functiorctvhi
depends on the deformation locally only through the deftionagradient, that is, a functio’ [x, F(x, t)] is given such
that,

ow ow oW _r
whereP andS represent the first and the second Piola—Kirchhoff stresoterespectivel\E is the deformation gradient,
which is the derivative of the deformatio@;is the right Cauchy-Green deformation tensor, which isgivgC = F7F;
and T is the Kirchhoff stress tensor. Therefore, the storedgnérnction W (x, F) is said to be objective or frame
indifferent.

3.3 Isotropic hyperelasticity

Isotropy is defined by requiring the constitutive behav@mbe identical in any material direction. This implies that
the relationship between strain enefi§yandC must be independent of the material axes chosen and, carsgqil’
must only be a function of the invariants €fas:

w

I :=1r(C) = Z Cii = C11 + Coa + Css (242)
i=1
) 3
I =5 (I} —tr(C?)] = > C2 = CF, + C3, + C3y (240)
i—1
3
I3 :=det(C) = H Cii = C11C22C33 (240)

i=1
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where the componen(s;; are precisely derived from the eigenvalues problem. Noimguhe following relationships:

o, . 0L oL, .,
8_0 =1, 8_C =LI-C and 9C = I5C (25)

and the constitutive Egs. (23), the symmetric Piola—Kiaffitensor becomes:

— 4+ — C+2—IC! (26)

oW oW oW oW
=2 —I0L | I-2
S ( oI, ' 0L 1) o1, ol

Using the relation- = FSF7, the following constitutive equation for the Kirchhoffess is obtained,

oW oW ow oW
=2l —I3|I14+2—+ —1T — 92— b2 27
T (813 3) * (8]1 oL l)b T @7)

whereb = FF7 is the left Cauchy-Green deformation tensor.
3.4 Thehyperelastic CR approach

Consistent with the assumption of isotropy and the notiommfintermediate stress-free configuration, the stress
response by a stored-energy function is characterized by:

- _ _2 _2
W =U(J%) + W(b%), with b:=J° *FF =J° *be (28)

whereU : Ry — Ry U {0} is a convex function off := det(F¢) and the volumetric and deviatoric partsiéf are
represented by (J¢) andW (b®), respectively, and their relations are defined as:

1 1 2 - 1 _
U(Je) = = [— (79 = 1) 1o, Je] and W (b%) := ~p [tr (b°) — 3] (29)
2 |2 2
wherey > 0 andx > 0 are interpreted as the shear and bulk modulus, respectiviglg definition ofb® yields
det(b®) = 1, hence, the denomination of the deviatoric part assignét té\lso,

tr(b®) = tr(C°), where C°®:=.J°¢ *F¢ F° (30)

Finally, letW = U(J¢) + W (C¢) and comparing (28) and (30)/ (b¢) = W (C¢). Then the Kirchhoff stress tensor
is obtained by the general expression:

T = QFQ%FQT =JU'(J)I+s, where s=2dev (FQ%FGT) (31)

where dey-) denotes the deviatoric part 6f). Note that the uncoupled, stored-energy function (28)ltfeguuncoupled
volumetric-deviatoric stress-strain relationships,ahhis very important to CR approach. From the Egs. (30) any (29

T=Jl+s (32a)
k(J9 =1

p:=U'(J% = % (32b)

s: = deVr) = udevb®) (32¢)

Note thatU(J) — +oo andp — +oo, asJ — 0 andJ — oo. Further, it can easily show that Eq. (32) reduces,
for small strains, to the classical isotropic model of tmeéirized theory. In the computational context, the hypstil
constitutive model (32) evaluated at timyg.; yields:

Tn+l = JerlanrlI + Sn+1 (333)
a1 : = U'(J5p1) (33b)
Spt1: = pdevb;, ) (33c¢)

This is a main part of the the full algorithm described in Siamal Hughes (1998) with porpose to abridge this paper.
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4. NUMERICAL STUDIES

In order to examinate the response from the considered elgtiermodel, a set of numerical comparison between
the hyperelastic model presented in the literature and th@etndescribed in the preceding section is performed. The
objective is to provide a set of simple yet representatigt peoblems with well established numerical results. The
important restriction of the CR formulation showed throdigis paper is in the fact that the displacements and rotation
are large, although the strains are small. Thus, the hygstreimodel presented in this paper regards this limitation

4.1 A simple patch test

The first example is a simple plane-stress tension test {ge8)F The problem consists of a square hyperelastic plate
under two axial concentrated loads applied at the free esrnehe mechanical properties and dimensions of the plate
are the following: Young’s modulug = 1.0 x 10%; Poisson’s ratio = 0.3; side L = 10.0 and side-to-thickness ratio
L/h = 10. Figure 3(b) shows the simple mesh implemented in orderabate the model.

y
b —F2 4 3 .
E=10x10° Fr2
v=03 @
L/h=10
@
— F/2 F/2
L & —_— X
L—J 1 2
(a) Problem description (b) Analyses descretization

Figure 3. A simple plane stress axial test.

To solve a system of nonlinear algebric equations, diffesgategies is employed, such as the cylindrical arc-lengh
method, the normal plane method of Riks-Wempner and thetegdermal plane method of Ramm. All these three
strategies were combined with the full Newton-Raphson oekth order to control progress along the equilibrium path.
Therefore, the iteration process is continued until théediihce between the update configuration and the previoais on
reduces to a preselected error tolerance, whieh<s10~5, is adopted and results are obtained using 20 load steps for
this first application.

Remark 2. For details of the strategies used to solve the nonlineaesyssee Haugen (1994).

Figure 4 depicts the gradual development of the axial digpteent with the load increase. The continuous line
represents the deformed configuration at each load step.

N

\

\
\

Z |

step 1 step 10 step 20
Figure 4. Deformed configuration through analyses.

The finite element solution is compared with Toscano and Kind2007) and Fig. 5 clearly shows very good agree-
ment of the model proposed. To the first load step, for exantipdeaxial displacement obtained by Toscano and Dvorkin
(2007) was 0.16 while the CR hyperelastic element gives,0.%2, a percentual difference of the 0.75%. To the last load
step, this diffefence increase to 0.998%.

4.2 Cantilever under constant moment

The next example is described in Fig. 6. The initially-ghdicantilever is clamped at one end (all displacementg zero
and loaded by a constant momeMt at the other end. The analytical solution corresponds toamb®lled up into a
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Figure 5. Axial displacement at the node 2.
circular arc of radius? given by:

1 M
- - 34
R EI (34)

In order to test the singularity-free nature of the presément, it is investigated the case in which the beam rolled
up into a complete circled(= 27) using a mesh of 20 elements. This example does not test iitariee-dimensional

behaviour but, in two-dimensions, is a severe test of imesitamal bending. The material and geometrical properties a
choosen a® = 1.2 x 107, L/b = 10, L/h = 100 andv = 0.

z
E=12x107 y
v=0.0
L/h =100

L/b=10

20 elements

Figure 6. Initial geometry for cantilever subject-to-endmrent and the discretization of the problem.

The analysis is performed using 20 elements with uniform Lénesh. The solution is obtained using six equal steps
of AM = % At each step, convergence was achieved to 10~ in three iterations. Figure 7 depicts all steps of
the analyses and the rotation versus moment applied. Ceapathe analytical solution, the element CR formulation
underpredicts rotations by 1.32% while the element progpgs€oscano and Dvorkin (2007) overpredicts by about 1.84%.
Hence, the present element displays better results then elment, although this difference was very small.

Remark 3. In this example, the applied hodal moment load is chooseauseit is non-conservative. The “standard”
corotational formulations are usually not able to solve lpems with non-conservative loads, but the element prapose
is in excellent agreement with the solution obtained by dos@nd Dvorkin (2007) and the analitycal solution.
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Figure 7. Initial and deformed geometries for cantilevedenconstant moment and the convergence of the solutions.

4.3 Hemispherical isotropic shell

The next case shown in Fig. 8 refers to the pinched hemisgdiesfiell with a 18 hole. The loads are two pairs of
inward and outward point loads, 9@part. This analysis is used as a test case in many previdlisgtions because its
highly warped shell problem. To give good results for thesmems, two properties must be demonstrated by the CR
hyperelastic shell element: an inextensional-bendingemodst be allowed and secondly, a rigid body motion must be
well expressed. For symmetry reasons, the problem is moédsieg only one quarter of the hemisphere. The material
properties arér = 6.825 x 107 andv = 0.3, the radius isR = 10 and the thickness i = 0.04.

E=6.285x 107
V=03 ;s .
e N
h=0.04 AR
R=10 A NN

= FI2 " Free
Figure 8. Pinched hemispherical shell with & T®le.

The problem is solved using three uniform meshes; namely, 8x8 and 16<16 with 32, 128 and 512 elements,
respectively. The plot of a pinching load values versus fhpledcement under the corresponding applied load is shown
in Fig. 9. The three top curves correspond to the displacenardery direction, while the lower curves represent the
displacements underaxis, see Fig. 9(a). The results obtained using either dhtte® meshes, are in excellent agreement
with the results reported by Simed al (1990). In a poor mesh, the difference between presentsgleand the element
proposed by Toscano and Dvorkin (2007) is hardly noticeaBigure 9(b) helps to demonstrate the behavior of the
solutions.

Figure 10 shows the deformed mesh configurationk(l®) and this computation was carried out in 5 iterationssThi
represents a half of iterations obtained by Sital. (1990) for the same mesh.
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Figure 9. The displacement-load plots for the different ele@f the pinched hemisphere analysis.

Figure 10. Nodal displecements of thexIB mesh, the value labeled in a right scale refers to theatisphent.,,.

5. SUMMARY AND CONCLUSIONS

The paper has described the development of the corotatigaadjular shell element for hyperlastic materials. The
ANDES approach found in the literature, has been used atflorraulation. Three numerical applications have shown
that the proposed element can be used to analyse problesenfirg large displacements and rotations, but smalhstrai
If this assumption is violated for a coarse discretizatibis,necessary break it into more elements. For this redasdhe
context of hyperelasticity, the model must be incompréssileo-Hookean solid.

A excellent agreement with analytical and numerical reshétve been obtained with fine and coarse meshes, and also
with distorted elements. It can be concluded that it is ath@eous to use CR description because using the described
corotational framework, efficient linear elements are matically transformed to nonlinear formulations.
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