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Abstract. Numerical solutions for heat transfer problems aseially obtained using an algorithm implemented in
sequential programming language. Despite a poveet of tools that can be useful in many heatsfanproblems,

electronic spreadsheets have not been used in Hwteof problems, except for less complex isstiéat is partially

due to the dificulty in simulate loop iterations étectronic spreadsheets. In the present worklatively complex

phase change transient heat transfer problem isesblby coupling the spreadsheet iteration faciityh the time

increase required by the problem’s physics. Besitlee energy conservation equation is written dase an enthalpy
formulation and the finite volume method is usedte discretization of the corresponding diffeiahéquation.
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1. INTRODUCTION

Electronic spreadsheets are generally used as portiamt tool in the engineers’ calculations. Aldog to their
spread availability and a whole set of functionedif spreadsheets are extensively used as an ieduaatl training tool
in Engineering undergraduate courses. Howevegasisheets have inherent limitations. For instaloms so
commonly implemented in programming languageshard to mimic in spreadsheets. For these reatiosrg are lots
of articles concerning the use of spreadsheetsiémtific education, mainly about either new usegrioblem solutions
or about overcoming such limitations. See, fomagke, Tabor (2004), Mokheimer and Antar (2000), ¢&h999), Tai
(1999), Schumack (1997) and Gretetal (1997). The present work shows the use of areE%cspreadsheet in the
solution of a somewhat complex heat transfer prablgth a simple approach to deal witops As an example, a
transient two-dimensional heat transfer problenmphase change is formulated and solved.

Phase change materials (PCM) are ordinarily usedrfergy storage, employing their latent heat, dp@iarticularly
useful in applications that require heat transfénaarly) constant temperature. The example showinis work aimed
at the use of a PCM, inside a hollow metallic didtich can be used to deliver meals to patientstaispital (see Fig.
1). Currently, hot water is used to keep food wedrduring the time required between the dish suaptyits delivery.

Figure 1 — Hollow metallic dish used for meal defiy at hospitals.

2. MATHEMATICAL FORMULATION

Cylindrical geometry is used for the heat trangfeoblem formulation. The equation for the transidmwo-
dimensional heat transfer problem considered is:
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A phase change process at constant pressure inafdi@gonstant temperature. So, temperature sheutdplaced,
in Eq. (1), by an appropriate new dependent vagidbat could vary including the phase change peri&athalpy
usually substitutes temperature in such proces3d® enthalpy transforming model employed in thespnt work
follows the work of Cao and Faghri (1989). Entlyadmd temperature are related by:

h=cT. 2)
In this work, enthalpy will be considered zero ¢ tphase change temperature in the solid phaseiceHat
temperatures below the melting temperatidre (T,,), at the solid phase, enthalpy will be negatives(0). Throughout
the phase change proce3sHT,), enthalpy varies from zero to(latent heat). In the liquid phasg ¥ T.), enthalpy
assumes positive values above the latent heat (atue.).
It is also convenient, in the current formulatibmuse the so-called Kirchhoff's temperature, dedias:

T = [kdT=k(T-T,). ®)

Fle—

Therefore, Eq. (1) can be restated as:

0T + 10T + 0T _ ,oh
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whereT andh will behave as stated at Tab.1. The subsctigtsls refer to liquid and solid phases, respectively.

Table 1 — Relationship among temperature, Kirchhaéfmperature and enthalpy at solid, phase chanddiquid

regions.
Phase Temperature Kirchhoff's temperature Enthalpy
) ._, h
Solid T<T, T =k— h<0
Ps
Phase change _ .
region T=T, T =0 O<h<lL
. h-L
Liquid T>T, T =k— h>L
PI

Due to numerical reasons, it will be useful to egw the Kirchhoff's temperature as a linear fumctad the
enthalpy:

T*=Th+S, (5)
where the constants and S go after Tab. 2.

Table 2 — Constants from the linearization of thieekhoff's temperature at the solid, phase chamgkliguid regions.

Phase Kirchhoff's temperature constants Enthalpy
k

Solid r=—= S=0 h<0
Cps

Phase change region =0 S=0 O<h<L

k Lk,

Liquid r=— S=-—~ h>L
Cpl Cpl

Replacing Eq. (5) into Eq. (4), the following eqaatis obtained:

0'(h) , 2°S +(ga(rh>+lﬁ)+ o(Th) 'S |_ ,0h (©)
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Equation (4) has been transformed into Eq. (6)pm@&lmear equation with a single dependent vari&blelhere is
no closed form solution for Eq. (6). Hence, a nuoarsolution should be sought. In the present wibk Finite
Volume Method (FVM), (Patankar, 1980; Maliska, 2p84ds been chosen.

Using the FVM, the heat transfer equation is irdggpt for each single finite volume, being the thamfgmamics
properties values considered constant inside thene Furthermore, each finite volume is constdaround a nodal
point, which concentrates the properties valuesheBatic representations of a finite control voluocmmstructed

around a nodal point “P”, and its neighbor volurtids (north), “S” (south), “E” (east) and “W’ (westlare shown in
Fig. 2 and Fig. 3.

Figure 2 — Schematic representation of the finitetiol volumes (lateral view of the hollow metaltish).

Figure 3 - Schematic representation of the finitetl volumes (superior view of the hollow metldiish).

A control volume “P” has six neighbors. Howeves there is no temperature (and enthalpy) varidtonhe same
radius, there is also no need to define the cooredipg volumes. For this reason, Fig. 3 represerftaction of the

whole domain corresponding to an angle of 1 radguré 4 is a general two-dimensional representatibrihe
conventions used further.
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Figure 4 — General two-dimensional conventionglfstances.
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A general algebraic equation, to be numericallyeolfor the domain, can be obtained by integradibthe Eq. (6)
with respect to the independent variabilesandt.

The first term:

i ﬁ(aZ(rh) 9 sj — KrEhE -h .S -Spj_[rphp Ny, S _SNJ:IrAZAt 7)
t-At s w &e &e &w &w
The second term:
j J”.Je-(la(l'h) rlasj —— K AR AR AR SEJ (W CIACHEINL Spﬂm ®)
The third term:
I f }(az(rh) oS jdzrdrd{(m -Ih . S —Spj_(rphp T, S _SSﬂrArAt )
t-At w &h &h &S &S
The fourth term:
2 b

After the integration of Eq. (6), shown from E@) (o Eq. (10), and some rearrangement, one obtains
algebraic equation as shown by Eq. (11):

Ah, +Bh, +Ch.+Dh, +Eh,+F =0, (11)
where:
P P
A=raraane]r,| 3 e &w N S S O S E R a2 (12)
c?d'r a, o, )& \& & )Az| A
B w
B = rArAzZALT,, 11 _ 14, (13)
Ar o, TrAr 4,
C = rArAzZAT, 11,14 (14)
| Ar a, T 4,
D = rArAzAtT {ii} (15)
Az O,
E = rArAzZAT, L1 (16)
Az c&
F =rArAzAt J. dw i i i ! 11 o
rAr a, o, &, o)Az \& &, )N
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Finally, the enthalpy at the internal finite coritvolume “P” can be obtained by the following edoat

hpz_BhN+ChE+DhN+EhS+F_ (18)

A

2.1 Boundary Conditions

Equation (11) and its coefficients defined by EtR)(to Eq. (17) are valid for any internal node.islnecessary,
however, to establish appropriate equations fobthendary conditions.

Finite control volumes, at the external surfacettom hollow metallic dish, exchange heat by conesectvith the
surrounding environment. So, one has:

oV(n —h) = gt (19)
at a rate governed by the Newton'’s law for cooling:
q=mA(T.-T). (20)

Combining Eg. (19) and Eg. (20), and replacing terature for enthalpy, one has:

t-At
h = h +ﬂ[u _h JAt . 1)
LAV C

p

Finite control volume can be written as:
AV = AAl, (22)
where Al is the length of a finite control volume, perpendar to A . Depending on the casA| can be replaced by

Ar or Az. Equation (21), written for a finite control vohe “P” at the external surface on the hollow matalish,
therefore, could be restated as:

t-At
h' =h"™ +%(Tw L } (23)
C

P
Symmetry condition at the very center of the hollmetallic dish can be easily stated as:
h, =h. (24)

The complete set of equations for the whole dornambe visualized in Fig. 5

D Equation 11
[C] Equation 23

|:| Equation 24

Figure 5 — Equations used for different regions.
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3. NUMERICAL SOLUTION

The simultaneous solution of the complete set afaégns was carried out using Excel™ spreadshéetthis
implementation, each finite control volume corrasg® to an Excel’'s cell. Excel™ has a huge numib¢oas and
functionalities, some of them, extensively usedha present work such as conditional formattingraiion and the
function “IF”".

Iteration (Tools— Options— Calculations— Iteration (on)) was used in order to establishehthalpy field, for
the whole domain, at each time step.

Conditional formatting was used to allow phase d¢eaprocesses to be visualized. Then, if a ce¥adid” it is
painted in blue, if it is “liquid” it is painted ired and if the cell is “melting/solidifying” it Wibe painted in purple. So,
throughout the iterations, the cells’ colors change

Function “IF” was extensively used in nested staets, mostly to provide the correct value of sorhgsjral
properties. For instance, if a cell were “solittie use of the function “IF” would allow selectitite set of values for
the physical properties corresponding to the s@glon, and so far. For a cell under “meltingMidication”, function
“IF” would allow to calculate, automatically, an erage mean for the values of the properties. Kamele, the
average mean to the PCM’s specific mass for d'edlting/solidifying” would be calculate as:

L-h)po, +h
p,=\Lohlethy (25)
L

As one can expect from Eq. (25),i= 0, p,=p,and if h=L, p,=p,.

In order to link the Excel's iterations to time irasing, a simple but effective calculation is perfed at every
single iteration. The amount of energy stored theoPCM at a time is equal to the sum of the enthalpy of each cell.
In the same fashion, the total heat transfer ratebe easily obtained as the sum of the heat #anafe released by
each cell at the external surface, as stated by2B). Therefore, following and adapting Eq. (B1}he whole domain
one obtains:

H t_ H t-At
tpresent = tpast + h t-At (26)
h T ___ surface
A[ ) CP ]

wheretyeseni@Ndtpag are the current time and the time one step befespectively. Alsobsraceis the PCM's specific
enthalpy on the exterior surface.

The convection heat transfer coefficient was calga considering natural convection to the airGC2 It was
used the following correlation to obtain the Nusseimber:

Nu = 0555Gr Pr)**, (27)

whereNu, Gr andPr are the Nusselt, Grashof and Prandtl numbersectisply.
Nusselt number and convection heat transfer coeffiare related by:

Nu=— (28)

where ¢ is a characteristic dimension of the body. In pnesent work it was adopted the harmonic mearhef t
diameter and height of the dish.

4. COMMENTS ON THE PHASE CHANGE MATERIAL

The PCM chosen for the present application shoaldfy a set of requirements. An important requieat to be
met is thafT,, should be between 60°C and 65°C in order to atlmdexcessive proliferation of microorganisms into
the food. Other important requirements for the P@M: to own a large latent heat, to be non-toxid aot to be
expensive or unavailable.

A material that meets the above requirements igptiimitic acid. The palmitic acid is a saturated, found in
animals and plants. The main commercial sourcéhefpalmitic acid is the palm tree oil. It preseat melting
temperature of 61°C, latent heat of 203.4 kJ/kgrrttal conductivity of 0.16 W/(mK), specific masstire solid and
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liquid phases of 942 kg/m? and 862 kg/m?, respebtivand specific heat in the solid and liquid meaesf 2.2 kJ/(kgK)
and 2.48 kJ/(kgK), respectively (Sari and Kayguamf?2).

5. RESULTS

Numerical tests were performed to find approprisp@ace and time intervals. Results indicate théoviahg
intervals as adequatér = Az=0,001 m e At =1s.

Below, a number of computer screens (Fig. 6 tolBigtepresenting the solidification process toetéht periods of
time is shown.
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Figure 6 — PCM fully molten at initial time and il temperature (65°C).

Figure 6 shows an Excel™ screen representing ad Islice of the metallic dish (not shown) fulfilled PCM,
before the start of the iterations. The PCM (patmacid) is completely molten, at 65°C, being lgpiid phase
represented in red. Figure 7 shows the very baginof the solidification process, being the cgiEnted in purple
representing PCM under solidification. Solidificat process continues as time increases, as caadwein Fig. 8 and
Fig. 9. When the PCM becomes fully solid, as ig. B0, all the cells are painted in blue.
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Figure 7 — Solidification starts at the externaface.
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Figure 8 — Front of solidification advances towatttks inner core of the PCM.
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Figure 9 — Front of solidification advances moredads the inner core of the PCM.
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Figure 10 — PCM fully solid.
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6. CONCLUSIONS

Numerical solution for a phase change transient traasfer problem was found using an Excel™ siwleet.
Besides, an enthalpy transforming model and theefirolume method were employed. At each time #tepenthalpy
field was calculated using the spreadsheet’s itardtcility. In order to simulate thieopsthat would be required to
provide advances in time by implementations in Hglel programming languages, a simple link betwerthalpy
changes in time and the Newton’s law for coolinghatdomain’s boundaries was performed.

As further research, the validation of the numérnieaults should be done by comparison with expenital data.
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