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Abstract. Models are proposed to predict the fatigue crack growth (FCG) process using crack initiation properties and 
critical damage concepts. The crack is modelled as a sharp notch with a very small but finite tip radius to remove its 
singularity, using a strain concentration rule. In this way, the damage caused by each load cycle and the effects of 
residual stresses can be calculated at each element ahead of the crack tip using the hysteresis loops caused by the 
loading, without the need for adjustable parameters. A computational algorithm is introduced to calculate cycle-by-
cycle crack growth using the proposed methodology. A quite good agreement between the εN-based crack growth 
predictions and experiments is obtained both for constant and for variable amplitude load histories.  
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1. INTRODUCTION  
 

Since the pioneer work of Majumdar and Morrow in 1974, several models have been proposed to correlate the oli-
gocyclic fatigue crack initiation process, controlled by the strain range ∆ε, with fatigue crack propagation rates, con-
trolled by the stress intensity range ∆K. Some of this so-called critical damage models consider the width of the volume 
element (VE) in the crack propagation direction as being the distance that the fatigue crack propagates on each cycle da. 
Others consider the fatigue crack propagation rate as being the VE width divided by the number of cycles that the crack 
would need to cross it. However, most models do not properly deal with the supposed stress field singularity at the 
crack tip, which implies that all damage would be caused by this very last event. Not too long ago, an improved model 
that deals with the actual elastic-plastic stresses at the crack tip has been proposed (Durán et al., 2003), using εN pa-
rameters and expressions of the HRR type to represent the elastic-plastic strain range inside the plastic zone ahead of 
the crack tip. The crack tip is modeled as a sharp notch with a very small but finite tip radius to remove the singularity 
issues. The origin of the HRR field is shifted from the crack tip to a point inside the crack, located by matching the 
HRR strain at the blunt crack tip with the strain predicted at that point by a strain concentration rule. 

This non-singular model considers that the damage zone ahead of the crack tip is composed by a series of very small 
VE working under different strain ranges, which are broken sequentially as the crack propagates. Each of these VE sees  
elastic-plastic hysteresis loops of increasing amplitude as the crack tip approaches it, see Fig. 1, and any given VE suf-
fers damage during each load cycle, caused by the amplitude of the hysteresis loop acting in that cycle, which in turn 
depends on the distance ri between the i-th VE and the fatigue crack tip. Fracturing of the VE at the crack tip (which 
causes fatigue crack growth) occurs when its accumulated damage reaches a critical value, due to the summation of the 
damage suffered during each cycle, quantified by a damage accumulation model.  

In order to generalize the above idea to the variable amplitude (VA) loading case, it is necessary to perform cycle-
by-cycle sequential calculations to be able to account for load sequence effects (Suresh 1998, Skorupa 1998 e 1999, 
Castro et al. 2005). These effects, caused by several mechanisms that can retard or accelerate the growth of a fatigue 
crack after significant load amplitude variations, are very significant and must be considered. These load interaction 
mechanisms can act behind, at or ahead of the crack tip. Among them, it is important to mention: (i) crack closure, act-
ing behind the crack tip, which can be caused by plasticity, oxidation or roughness of the crack faces, or even by strain 
induced phase transformation; (ii) crack tip blunting, kinking or bifurcation, acting at or close to the crack tip; and (iii) 
residual stress and strain fields, which act ahead of the crack tip. 

Most load sequence effects models in fatigue crack growth (FCG) are still based on Elber’s plasticity-induced crack 
closure. However, there are several important problems that cannot be explained by Elber’s effective stress intensity 
range ∆Keff concept. For example, a well supported strong objection against crack closure is based on convincing ex-
perimental evidence such as fatigue crack growth threshold values ∆Kth that are higher in vacuum than in air 
(Vasudevan et al. 2005). Another very important problem that cannot be explained by the Elber mechanism is crack de-
lay or arrest after overloads under high R = Kmin/Kmax ratios, when the minimum value Kmin of the applied stress-
intensity range ∆K = Kmax − Kmin always remains above Kop, the (measured) load that opens the fatigue crack (Meggio-
laro e Castro, 2003). In this case, there is no closure either before or after the overloads. 

In this work, the idea that FCG is caused by the sequential failure of VE ahead of the crack tip is extended to deal 
with the VA loading case, using a non-singular damage model. A cycle-by-cycle computational algorithm is proposed, 
to be able to calculate the variable crack increments at each cycle and to account for load sequence effects. The meth-
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odology not only explicitly considers the mechanisms acting ahead of the crack tip, but it is also able to include effects 
of the mechanisms acting behind it such as crack closure. The methodology is described next. 

 

 
 

Fig. 1. Schematics of the FCG assumed to be caused by the sequential fracture of volume elements (or tiny εN speci-
mens) at every load cycle, loaded by an increasing strain history as the crack tip approaches them. 

 
2. THE NON-SINGULAR DAMAGE MODEL 

 
The damage ahead of a fatigue crack tip can be estimated using simple but sound hypotheses and standard fatigue 

calculations, supposing that fatigue cracks grow by sequentially breaking small volume elements (VE) ahead of their 
tips, which fracture when the crack tip reaches them because they accumulated all the damage the material can support. 
In this way, εN procedures can be combined with fracture mechanics concepts to predict FCG, using the cyclic proper-
ties of the material and the strain distribution ahead of the crack tip. These models can consider the VE width in the 
FCG direction as being the distance that the crack grows during each cycle, or the FCG rate as being the VE width di-
vided by the number of cycles that the crack would need to cross it.  

Critical damage models are not new (Majumdar e Morrow 1974, Schwalbe 1974, Glinka 85), but they still need im-
provements. Most models assume singular stress and strain fields ahead of the crack tip (concentrating in this way all 
the damage next to the tip), and thus need some adjustable constant to fit the FCG da/dN data, irreversibly compromis-
ing their prediction potential in this way. However, the supposed singularity at the crack tip is a characteristic of the 
mathematical models that postulate a zero radius tip, not of the real cracks, which have a blunt tip when loaded. In other 
words, real cracks must have finite strains at their tip under load, or else they would be unstable. To avoid this problem, 
the actual finite strain range at the crack tip ∆εtip can be estimated using the stress concentration factor Kt for the blunt 
crack (Creager e Paris 1967) and a strain concentration rule. The strain range field ahead of the crack tip can then be 
upper-bounded by ∆εtip, e.g. by assuming ∆εtip constant where the singular solution would predict strains greater than 
∆εtip, or by translating the singular strain field, as discussed later). 

A few models assume that the entire fatigue damage occurs in a small region close to the crack tip, using the number 
of cycles N* associated with ∆εtip (which can be obtained from Coffin-Manson’s equation, e.g.) to calculate the FCG 
rate as the length of this region divided by N*. But such models have two shortcomings. First, neglecting the fatigue 
damage beyond this region concentrates it in the very last N* cycles, a non-conservative hypothesis. Second, assuming 
intermittent and not a cycle-by-cycle fatigue-induced increments in the crack length, although valid in some cases of 
crazing in polymers, is certainly not true for most metallic structures, as evidenced by their striated crack surfaces.  

To avoid these limitations, the model proposed in this work uses Schwalbe’s modification of the HRR field to repre-
sent the strain range distribution ahead of the crack tip. Then, it removes the crack tip singularity by shifting the origin 
of the strain field from the crack tip to a point inside the crack, located by matching the crack tip strain with ∆εtip pre-
dicted by a strain concentration rule, such as Neuber (1961), Molsky-Glinka (1981), or the linear rule (Stephens et al. 
2000). This approach recognizes that the strain range ∆ε(ri, ∆K) in all unbroken VE increases and causes damage during 
each load cycle as the crack tip approaches them, see Fig. 1. Therefore, the VE closest to the tip breaks due to the sum-
mation of the damage induced by all previous load cycles (which under constant amplitude load increases as ri de-
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creases while the crack grows), and not only by the damage induced in the very last load cycle. In this way, the fatigue 
crack growth rate under constant ∆K can be modeled by the sequential failure of identical VE ahead of the crack tip. 

This model is then extended to deal with the variable amplitude loading case, which has idiosyncrasies that must be 
treated appropriately. First, the VE that breaks in any given cycle must have variable width, which should be calculated 
by locating the point ahead of the crack tip where the accumulated damage reaches a specified value (e.g. D = 1.0 when 
using Miner’s rule). Load sequence effects, such as overload-induced crack growth retardation, are associated with 
mean load effects caused by elastic-plastic hysteresis loop shifts, and can be calculated using the powerful numerical 
tools available in the ViDa software (2009). Moreover, this model can recognize an opening load, and thus can separate 
the cyclic damage from the closure contributions to the crack growth process. The necessary equations for constant and 
variable amplitude loadings are discussed next. 

 
3. CONSTANT AMPLITUDE LOADING 

 
In every load cycle, each VE ahead of the crack tip suffers strain loops of increasing range as the tip approaches it, 

and a damage increment that depends on the strain range in that cycle, thus on ri (the distance from the i-th VE to the 
tip) and on the load ∆Kj at that event. The fracture of the VE at the crack tip occurs because it accumulated its critical 
damage, e.g. by Miner’s rule when Σnj/Nj = 1, where nj is the number of cycles of the j-th load event and Nj is the num-
ber of cycles that the piece would last if loaded solely by that event’s loading levels. If under constant ∆K (or ∆Keff) the 
fatigue crack advances a fixed distance δa in every load cycle, and if, for simplicity, the damage outside the cyclic plas-
tic zone zpc is neglected, there are thus zpc/δa VE ahead of the crack tip at any instant that need to be considered. Since 
the plastic zone advances with the crack, each new load cycle breaks the VE adjacent to the crack tip, induces an in-
creased strain range in all other unbroken VE, and adds a new element to the damage zone, thus nj = 1. Moreover, since 
the VE are considered as small εN specimens, they break when 
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where N(ri) = N(zpc − i⋅δa) is the fatigue life corresponding to the plastic strain range ∆εp(ri) acting at a distance ri from 
the crack tip. This fatigue life can be calculated using the plastic part of Coffin-Manson’s rule 
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where εc and c are the plastic coefficient and exponent, and ∆εp(ri) in its turn can be described by Schwalbe’s [9] modi-
fication of the HRR field 

( )
1

12 chcYcp i
i

zpS( r ) rE
+∆ε = ⋅               (3) 

where SYc is the cyclic yield strength, hc is the Ramberg-Osgood cyclic hardening exponent, and zpc is the cyclic plastic 
zone size in plane strain, which can be estimated from Poisson’s coefficient ν by 
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The HRR field describes the plastic strains ahead of an idealized crack tip, thus it is singular at ri = 0. But an infinite 

strain is physically impossible. This does not mean that singular models are useless, but only that the damage close to 
the crack tip is not predictable by them. To eliminate this unrealistic strain singularity, the origin of the HRR coordinate 
system is shifted into the crack by a small distance X, copying Creager and Paris (1967) idea. Approximating Miner’s 
summation by an integral, setting the VE width δa equal to an infinitesimal da at a distance dr ahead of the crack tip, 
which is easier to deal with (Durán et al. 2003), then 
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To determine X and N(r + X), two paths can be followed. The first uses Creager and Paris offset X = ρ/2, where ρ is 

the actual crack tip radius estimated by ρ = CTOD/2, thus 
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The second path is more reasonable. Instead of arbitrating the offset of the strain field origin, X is determined by 

first calculating the crack linear elastic stress concentration factor Kt: 
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For any given ∆K and R, it is possible to calculate ρ and Kt from Eqs. (7) and (8), and then the stress and strain 

ranges ∆σtip and ∆εtip at the crack tip using a strain concentration rule. Assuming that the material stress-strain behavior 
is parabolic, with cyclic strain hardening coefficient Hc and exponent hc, and neglecting the elastic range, the Linear, 
Neuber and Molsky-Glinka concentration rules give, respectively 
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After calculating ∆εtip at the crack tip using one of these rules, the shift X of the HRR origin is obtained by 
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The strain distribution at a distance r ahead of the crack tip, ∆εp(r + X), without the singularity problem at the crack 

tip, can now be readily obtained by 
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This prediction is experimentally verified in SAE 1020 and API 5L X-60 steels and in a 7075 T6 aluminum alloy, 

using Eq.(13) to obtain the constant of a McEvily-type da/dN equation, which describes the da/dN×∆K curves using 
only one adjustable parameter A, 
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where Kc and ∆Kth(R) are the material fracture toughness and crack propagation threshold at the load ratio R. For the 
experimental verification, the values of Kc, ∆Kth(R) and the εN and da/dN data are all obtained by testing proper speci-
mens manufactured from the same stock of the three materials, following ASTM standards. The API 5L X-60 
da/dN×∆K experimental curves are compared with this simple model predictions in Fig. 2. Both the shape and the mag-
nitude of the data are quite reasonably reproduced by this critical damage model, with the Linear rule generating better 
predictions probably because the tests are performed under predominantly plane strain conditions. Moreover, since this 
model does not use any adjustable constant, this performance is certainly no coincidence. The Linear rule also results in 
good predictions for the SAE 1020 steel and 7075 T6 aluminum, see Durán et al. 2003. 
 

 
Fig. 2. da/dN×∆K behavior measured and predicted by the various strain concentration rules used in the critical damage 

model, for API-5L-X60 pipeline steel at R = 0.1 and R = 0.7. 
 

Despite this encouraging performance, a few remarks are still required. First, the damage beyond zpc has been ne-
glected to simplify the numerical calculations. This hypothesis is non-conservative, because there is significant damage 
beyond zpc, as it will be shown later. Instead, the monotonic plastic zone border zp will be considered in this simplifica-
tion. Second, FE calculations (Parton e Morozov 1978) indicate that there is a region adjacent to the blunt crack tip with 
a strain gradient much lower than predicted by the HRR field. These problems can be avoided by shifting the origin 
away from the tip by a distance x2 and assuming the crack-tip strain range ∆εtip constant over the region I of length 
x1+x2, shown in Fig. 3. The value of x1 can be obtained equating ∆εtip and the HRR-calculated strain range, and from the 
crack-tip stress range ∆σtip 
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Then, following Irwin’s classical idea, the value of the shift x2 is obtained by integrating the stress field σ(r), enforc-

ing equilibrium of the applied force 
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Since x1 < zpc, ∆σ(r) in the above integral can still be described by the HRR solution, resulting in 
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Fig.3. Proposed strain range distribution, divided in 4 regions to consider both the elastic and the plastic contributions to 
the damage ahead of the crack tip. 

 
These simple tricks generate a more reasonable strain distribution model, see Fig. 3: 
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where κ = 1 for plane stress and κ = 1/(1 − 2ν) for plane strain, and 
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Both constant (CA) and variable amplitude (VA) FCG can then be calculated using equations (18-22), which con-

sider all the damage ahead of the crack tip and provide a more realistic model of the FCG process. But Eqs.(2), (5) and 
(13) must be modified to include elastic parameters σc and b, and to account for the mean load σm effects on the VE life 
using Morrow elastic, Morrow elastic-plastic or Smith-Watson-Topper equations. But the life N in these equations can-
not be explicitly written as a function of the VE strain range and mean load and thus must be calculated numerically, a 
programming task that, despite introducing no major conceptual difficulty, is far from trivial, as discussed in the next 
sections. 
 
4. VARIABLE AMPLITUDE LOADING 

 
The da/dN×∆K curve predicted for CA loads could be used with a FCG load interaction model to treat VA prob-

lems. But the idea here is to directly quantify the fatigue damage induced by the VA load considering the crack growth 
as caused by the sequential fracture of variable size VE ahead of the crack tip. Since the Linear strain concentration rule 
generated better predictions above, it is the only one used here. Because load interaction effects can have a significant 
importance in FCG, they are modeled by using Morrow elastic equation to describe the VE fatigue life N 
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To account for mean load effects, a modified stress intensity range can be easily implemented for R > 0 to filter the 

loading cycles that cause no damage by using 
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where KPR is a propagation threshold that depends on the considered retardation mechanism, such as Kop from Elber’s 
equation or Kmax

* from the Unified Approach (Castro e Meggiolaro 2009). The damage function for each cycle is then 
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If the material ahead of the crack is supposed virgin, then its increment δa1 caused by the first load event is the value 

r = r1 that makes Eq.(25) equal to one, therefore 
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In all subsequent events, the crack increments must also account for the damage accumulated by the previous load-

ings, in the same way as it was done for the constant loading case. But as the coordinate system moves with the crack, a 
coordinate transformation of the damage functions is necessary: 
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Since the distance r = ri where the accumulated damage equals one in the i-th event is a variable that depends on 

∆Ki (or ∆Keffi) and on the previous loading history, VE of different widths may be broken at the crack tip by this model. 
This idea is illustrated in Fig. 4. In the next section, an algorithm is proposed to computationally implement the above 
methodology. 

 
5. SIMULATION ALGORITHM  

 
The proposed algorithm to numerically calculate fatigue crack growth under VA loading from the presented critical 

damage model is described here. Note that, naturally, CA loadings can also be calculated using this algorithm. 
Instead of using variable width volume elements, which would be difficult to handle computationally since such 

widths are not known a priori, the algorithm assumes that all VE have constant width δa, but it allows the existence of a 
partially cracked VE at the crack tip, with residual ligament rl. The idea behind the calculations is to find at each cycle 
the number of fractured VE and the new value of rl, obtaining then the crack increment. The algorithm equations are 
described next. 

First, upper bounds to the obtainable monotonic and cyclic yield zones are calculated. If the maximum values of 
Kmax and ∆K throughout the entire history are known, respectively Kmax* and ∆K*, then the upper bounds result in 
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If these maximum values are not known a priori, then they can be conservatively replaced by the fracture strength 

Kc in the above equations. The simulation resolution is set by the constant width δa of the VE, which is chosen in this 
work as 10−7m. To reduce the memory requirements and speed up the algorithm, only a domain of length ∆a ahead of 
the crack tip is considered, i.e., the damage at the volume elements beyond this distance is neglected. Traditional critical 
damage models consider this domain ∆a equal to the size of the current cyclic yield zone, however this may lead to 
non-conservative errors because the plastic deformation between the monotonic and cyclic yield zones also contributes 
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to significant accumulated damage. As seen in the hysteresis loops of a VE under constant ∆K loading (Fig. 5), the ac-
cumulated damage is already 0.47 in this example when the VE is reached by the cyclic plastic zone border. Neglecting 
this damage caused exclusively by the monotonic plastic zone would lead to non-conservative errors of almost 100% in 
the crack growth rate estimates. But in general it is not necessary to evaluate the damage at VE beyond the monotonic 
zone zp, as seen in Fig. 5, where the accumulated damage would still be very close to zero. 

 

 
Fig. 4. Schematics of the critical damage calculations, which under variable amplitude loading recognize variable 

crack increments by forcing the crack to grow over the region where the accumulated damage D = 1. 
 

 
 
Fig. 5. Schematics of the loops at a fixed VE at different crack growth stages, under constant ∆K loading, showing that 
an accumulated damage of 0.47 is already present in this VE when it is reached by the cyclic plastic zone zpc. 

 
In this work, two domain sizes ∆a are considered, either zpmax or zpc,max. Note that these domains are already overes-

timated, since they use the upper bounds of zp or zpc, and not their values at each loading. This guarantees that the size 
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of the calculation domain will be always larger than the monotonic or cyclic plastic zones independently of the loading 
history. For a resolution δa and domain length ∆a, the accumulated damage needs to be calculated at the borders of an 
integer number n = ∆a/δa of VE, which is accomplished by the n variables D1, D2, …, Dn, see Fig. 6. Note in the figure 
that the integer variable k denotes the index of the variable Dk associated with the damage at the next border of the VE 
where the crack tip is currently located. These n damage variables form a cyclic set, meaning that the variable Dn will 
be followed by D1, see Fig. 6. 

 

 

Fig. 6. Volume elements before and ahead of the crack tip, showing the main length parameters and the locations for the 
calculation of the accumulated damages D1 through Dn. 

 
In this algorithm, the current crack size a is represented as a function of the initial crack length a0, an integer number 

na of VE already broken, and the residual ligament width rl in the partially cracked VE where the crack tip is currently 
located (0 < rl ≤ δa, see Fig. 6), by 

 
a = a0 + na ⋅ δa + (δa – rl)          (29) 

 
In the beginning of the calculations, rl = δa and na = 0, resulting in a = a0 as expected. In addition, all damage vari-

ables are initially set to zero, and k = 1. 
The applied loading is then counted using a sequential rain-flow algorithm [17] to preserve loading order. For each 

event, the alternate and mean nominal stresses are calculated, obtaining ∆K, R = Kmin/Kmax, and the current plastic zone 
sizes zp and zpc. If ∆K is above the propagation threshold ∆Kth, which can indirectly include crack closure effects, then 
the damage at each VE is calculated. 

The current CTOD and ρ are calculated from Eq.(7). Equations (9-11) can then be used to obtain the crack tip stress 
and strain ranges, calculating the shift X of the HRR origin from Eq.(12). 

Assuming that the damage caused by the current event can be neglected beyond the monotonic plastic zone, then at 
most the first imax VE ahead of the crack tip need to be considered, where imax = [int(zp/δa) + 2] and int(x) returns the 
largest integer smaller than or equal to x. The distance ri between the crack tip and the ith VE border beyond it, associ-
ated with the accumulated damage Dk+i−1, is  

 
ri = rl + (i − 1) ⋅ δa           (30) 

 
The strain ranges ∆ε(ri) and associated damage are calculated from Eqs.(18-25) for i = 1, 2, …, imax. Such damage 

values at the VE borders are then added to the accumulated Dk+i−1. Then, the largest index i = ib is found such that 
Dk+ib−1 ≥ 1 (or greater than any other parameter defined using Miner’s rule). If ib exists, then ib VE are broken at the cur-
rent event, and ib is added to the total number na of broken elements. The new residual ligament rl in the first unbroken 
VE, to where the crack tip has advanced, is obtained from a linear interpolation between the accumulated damages at its 
borders: 

 

1

1 b

b b

k i

k i k i

Drl a D Dδ +

+ − +

−
= ⋅ −               (31) 

 
The ib broken VE do not need anymore the variables Dk through Dk+ib−1, which are all reset to zero. Then, ib new VE 

are created beyond the current domain border to keep the number of VE in the domain constant. The accumulated dam-
age from these new VE will be stored in the just freed up variables Dk through Dk+ib−1. Note that na can eventually be-
come larger than n, because of the new VE generated each time the crack advances. Finally, the index k is increased by 
ib, and the algorithm continues to evaluate the next event. It is easy to show that k = (na mod n) + 1, where (x mod y) is 
equal to the remainder of the integer division between x and y. Note that if any index in the described algorithm results 
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in a value i larger than n, then it is replaced by (i mod n). After all loadings have been sequentially considered in the 
calculations, the final crack size is evaluated using Eq. (29) and the final values of na and rl. 

 
6. EXPERIMENTAL RESULTS  

 
FCG tests under VA loading are performed on API-5L-X52 steel 50×10mm compact tension C(T) specimens, pre-

cracked under CA at ∆K = 20MPa√m until reaching crack sizes a ≅ 12.6mm. These cracks are measured with a 20µm 
accuracy by optical methods and by a strain gage bonded at the back face of the specimens. The basic monotonic and 
cyclic properties, measured in computer-controlled servo-hydraulic machines using standard ASTM testing procedures, 
are E = 200⋅103, SU = 527, SY = 430, SYc = 370, Hc = 840, and σc = 720 (all in MPa), hc = 0.132, εc = 0.31, b = −0.076 
and c = −0.53, where σc and b are Coffin-Manson’s elastic coefficient and exponent. 

About 50 εN specimens are tested under deformation ratios varying from R = −1 to R = 0.8 (at least 2 specimens are 
tested at each strain range) to measure the mean load effect on the εN fatigue crack initiation curve, see Fig. 7. Mor-
row’s strain-life equation, which includes the mean stress effect only in Coffin-Manson’s elastic term, best fits the ex-
perimental data. The basic da/dN curve, measured using the same equipment, is well fitted by a modified Elber-type 
equation da/dN(R = 0.1) = 2⋅10−10(∆K − 8)2.4 (da/dN in m/cycle and ∆K in MPa√m), using the crack propagation 
threshold ∆Kth(R = 0.1) = 8MPa√m to replace Kop. 

 

 
 

Fig. 7. Strain-life data for the API-5L-X52 steel, and Morrow elastic model that best fitted this data. 
 

FCG tests are then conducted under a VA history with 50,000 blocks containing 100 reversals each. The load history 
is counted by the sequential rain-flow method, using the ViDa software. The sequential rain-flow count of each applied 
block is shown in Fig. 8. Note the high mean stress levels, which have been chosen to avoid crack closure effects (the 
crack is always opened during such loading). 

The damage calculation is made using a specially developed software code following the algorithm discussed above. 
The constant width δa of the VE is chosen as 10−7m. Calculations with δa smaller than 10−7m result in the same crack 
growth values within 0.1%, meaning that in this case this resolution is enough to guarantee convergence. 

Assuming that the maximum values of Kmax and ∆K throughout the entire history are smaller than 20MPa√m (which 
could only be verified later, after the calculations), then Eq.(28) results in the upper bounds zpmax = 0.127mm and zpc,max 
= 0.0281mm. The domain length ∆a = 0.127mm is used in this calculation, resulting in only n = ∆a/δa = 1274 volume 
elements. Note that if the memory optimization method used in the proposed algorithm was not used, then a domain ∆a 
of the size of the CTS residual ligament 50 – 12.6 = 37.4mm would require n = 374,000 volume elements instead. 

The crack growth predictions based solely on εN parameters are quite reasonable, see Fig. 9. The prediction assum-
ing no damage outside the cyclic plastic zone zpc underestimated the crack growth. However, when the small (but sig-
nificant) damage in the material between the cyclic and monotonic plastic zone borders is also included in the calcula-
tions, as described in the proposed algorithm, an even better agreement is obtained. Note also that crack growth is 
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slightly underestimated after 1.8⋅106 cycles, probably because these calculations neglected the (small) elastic damage 
and its mean stress effects. 

 

 
 

Fig. 8. Sequential rain-flow of the variable amplitude load block applied to the API-5L-X52 steel. 
 

 
 

Fig. 9. Comparison between crack growth measurements and εN-based predictions for the variable amplitude load pre-
sented in Fig. 8 (API-5L-X52 steel). 

 
A similar VA fatigue crack propagation test is conducted on compact tension C(T) specimens of SAE 1020 steel, 

with measured properties E = 205GPa, SU = 491, SY = 285, SYc = 270, Hc = 941 and σc = 815MPa, hc = 0.18, εc = 
0.25, b = −0.114, and c = −0.54. The best FCG curve fitted to this material is slightly more complex (Castro e Meggio-
laro 2009), da/dN = 5⋅10−10⋅(∆K − ∆Kth)2⋅{Kc/[Kc − ∆K/(1 − R)]}, where ∆Kth = 11.6 and Kc = 277 (∆K, ∆Kth and Kc in 
MPa√m and da/dN in m/cycle).  

The VA load history in this case is a series of blocks containing 101 peaks and valleys each, as shown in Fig. 10. 
Once again a high mean R-ratio is used in this test, to avoid the interference of possible significant closure effects which 
could mask the model performance. Figure 11 compares the predictions using the proposed algorithm with the meas-
ured crack propagation data. These predictions are again quite reasonable, in special when ∆Kth is considered in the al-
gorithm. Therefore, one can claim that these tests indicate that the ideas behind the proposed critical damage model 
make sense and deserve to be better explored. 

 
7. CONCLUSIONS 

 
A damage accumulation model ahead of the crack tip, based on εN cyclic properties, was presented to predict fa-

tigue crack propagation under variable amplitude loading. The model treats the crack as a sharp notch with a small but 
finite radius to avoid singularity problems, and calculates damage accumulation explicitly at each load cycle. An algo-
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rithm was proposed to efficiently evaluate crack growth under variable amplitude loading from strain-life data. Experi-
mental results show a good agreement between measured crack growth, both under constant and variable amplitude 
loading, and the predictions based purely on εN data. 
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Fig. 10. VA load block applied to the SAE 1020 steel compact tension specimen. 
 

 
 

Fig. 11. Comparison between crack growth measurements and εN-based predictions for the variable amplitude load pre-
sented in Fig. 10 (SAE 1020 steel). 

 
 

8. REFERENCES 
 
Castro, J.T.P., Meggiolaro, M.A., Miranda, A.C.O. “Singular and Non-Singular Approaches for Predicting Fatigue Cas-
tro, J.T.P., Meggiolaro, M.A. “Fadiga sob Cargas Reais de Serviço”, in press (2009). 
Crack Growth Behavior”, Int.J.Fatigue 27 (2005) 1366-1388. 
Creager, M., Paris, P.C. “Elastic Field Equations for Blunt Cracks with Reference to Stress Corrosion Cracking”, 
Int.J.Fracture Mechanics 3 (1967) 247-252. 



Proceedings of COBEM 2009 20th International Congress of Mechanical Engineering 
Copyright © 2009 by ABCM November 15-20, 2009, Gramado, RS, Brazil 

 

Durán, J.A.R. , Castro, J.T.P., Payão Filho, J.C. “Fatigue Crack Propagation Prediction by Cyclic Plasticity Damage 
Accumulation Models”, FFEMS 26 (2003) 137-150. 
Glinka, G. “A Notch Stress-Strain Analysis Approach to Fatigue Crack Growth”, Eng. Fracture Mechanics 21 (1985) 
245-261. 
Majumdar, S., Morrow, J.D. “Correlation Between Fatigue Crack Propagation and Low Cycle Fatigue Properties”, 
ASTM STP 559 (1974) 159-182. 
Meggiolaro, M.A., Castro, J.T.P. “On the Dominant Role of Crack Closure on Fatigue Crack Growth Modeling”, 
Int.J.Fatigue 25 (2003) 843-854. 
Molsky, K., Glinka, G. “A Method of Elastic-Plastic and Strain Calculation at a Notch Root”, Materials Science and 
Engineering 50 (1981) 93-100. 
Neuber, H. “Theory of Stress Concentration for Shear-Strained Prismatical Bodies with an Arbitrary Non-Linear Stress-
Strain Law”, J. Applied Mechanics 28 (1961) 544-551. 
Parton, V.Z.,  Morozov, E.M. “Elastic-Plastic Fracture Mechanics”, Mir Publishers (1978). 
Schwalbe, K.H. “Comparison of Several Fatigue Crack Propagation Laws with Experimental Results”, Eng. Fracture 
Mechanics 6 (1974) 325-341. 
Skorupa, M. “Load Interaction Effects During Fatigue Crack Growth under Variable Amplitude Loading - a Literature 
Review - Part I: Empirical Trends”, FFEMS 21 (1998) 987-1106. 
Skorupa, M. “Load Interaction Effects During Fatigue Crack Growth under Variable Amplitude Loading - a Literature 
Review - Part II: Qualitative Interpretation”, FFEMS 22 (1999) 905-926. 
Stephens, R., Fatemi, A., Stephens, R.R., Fuchs, H.O. “Metal Fatigue in Engineering”, Interscience (2000).  
Suresh, S. “Fatigue of Materials”, 2nd ed., Cambridge (1998). 
Vasudevan, A.K., Sadananda, K., Holtz, R.L. “Analysis of Vacuum Fatigue Crack Growth Results and its Implica-
tions”, Int.J.Fatigue 27 (2005) 1519-1529. 
webpage www.tecgraf.puc-rio.br/vida (2009). 
 
9. RESPONSIBILITY NOTICE 

 
The author(s) is (are) the only responsible for the printed material included in this paper. 
 


