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Abstract. The problem of truss optimization has been studied, in most cases, considering a fixed geometry of the 

structure. This leads to the truss topology optimization problem, which only considers as design variables the truss 

members areas. However, the optimization of truss geometries can generally improve structural solutions, but at the 

cost of more complex problems. Some difficulties related to the optimization of truss geometries are: the truss geometry 

optimization problem is nonlinear by its nature; the evaluation of the gradients of the objective function and of the 

constraints can be difficult and sometimes approximated; and each possible geometry is in general associated to an 

optimum topology. However, the problem can be simplified if two assumptions are made. First, the areas of the truss 

members are considered as fixed values during the geometry optimization process, and then updated after this process 

is completed. The problem is then solved for the new members areas, and the procedure is repeated until the solution 

converges. Second, the objective function of the geometry optimization problem is related to the truss stiffness. Based 

on these two assumptions, analytical expressions for the gradients of the objective function and of the constraints are 

achieved. This improves the efficiency of the optimization method and reduces the computational effort of the 

numerical solution process. Moreover, since no assumptions are made on the topology being statically determinate, the 

proposed method can also be applied to statically indeterminate trusses. 
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1. INTRODUCTION 
 

Methods for the optimization of truss topology, where the members areas are taken as design variable, are well 

established and there is a rich literature on this subject. However, the problem of truss geometry optimization, where the 

nodes positions are taken as design variables, was not studied as extensively as the topology one, and consequently 

references on this subject are not so vast. One of the main reasons why topology optimization was studied more 

frequently than geometry optimization is that the topology optimization problem can, in most cases, be stated as a linear 

programming one. For these problems, very efficient methods are available and it is possible to guarantee certain 

important mathematical properties of the solution (Arora, 2004; Nocedal and Wright, 1999; Rao, 1996). The truss 

geometry optimization problem is, instead, non linear by its nature, and therefore it needs to be solved by nonlinear 

optimization methods, that are in general more complex and computationally demanding than the linear programming 

techniques. 

In the last decades the increase in computational resources made possible an increase in the use of nonlinear 

optimization methods, and thus the problem of geometry optimization was studied more extensively. However, some 

difficulties still hold. A first complication is that for every possible geometry there is an associated optimum topology. 

Thus, rigorously speaking, when solving a geometry optimization problem it is necessary to find the optimum topology 

associated with each geometry obtained during the optimization process. It can be noted, in this context, that while the 

optimization of truss topologies can be made without regarding its geometry, the inverse is, generally, not true. An 

optimum geometry depends on the topology considered. Thus, the concept of truss geometry optimization can be 

extended to the concept of simultaneous optimization of truss topology and geometry (Achtziger, 2006; Achtziger, 

2007), indicating that optimum geometries are dependent on optimum topologies. Consequently, in order to be 

considered a non heuristic method, the problem must be solved simultaneously for the optimum members areas and 

nodes coordinates, which unfortunately leads to computational difficulties. 

To avoid the coupling of geometry and topology optimization, a so called alternating optimization or coordinate-

wise optimization has been proposed (Achtziger, 2006; Achtziger, 2007). In this approach, the geometry is fixed and the 

resulting topology optimization problem is solved. Then, the topology is fixed and the resulting geometry optimization 

problem is solved. These two steps are repeated, until the optimum solution is obtained. Since this process is expected 

to provide increasingly better solutions, it can be viewed as a descent method (Achtziger, 2006). It should be noted, 

however, that the uncoupling of geometry and topology optimization may lead to convergence difficulties, since in 

some design points it may be impossible to improve the solution by changing only the topology or only the geometry. It 

may happen that in these points, only simultaneous changes in both topology and geometry lead to improvements in the 

current solution, and thus the alternating optimization procedure may fail (Achtziger, 2006; Achtziger, 2007). 

A second complication is that most nonlinear optimization methods need to evaluate not only the value of the 

objective function, but also its gradient. However, it is difficult to obtain analytical expressions for this gradient, since 

the relations between the nodes positions and the truss volume or the truss stiffness – two commonly used objective 

functions – are generally formulated in an implicit form. This difficulty can be avoided when considering that the 
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optimum topology is always statically determinate for a single loading condition (Achtziger, 2006; Achtziger, 2007; 

Hemp, 1973; Pedersen, 1970). This leads to the conclusion that when an optimum geometry is obtained, the forces 

carried by the truss members do not depend on the members areas, but only on the current geometry of the truss. It is 

possible, in this ways, to obtain the members areas based on simple equilibrium equations and considering the members 

as fully stressed. Using these concepts, the optimization problem may consider as design variables only the nodes 

positions, while the members areas are just adapted to the current geometry by a fully stressed design. In this approach, 

the nodal coordinates are called master variables, since they are the design variables actually changed by the 

optimization algorithm. The members areas are called follower variables, since they are just adapted to a given 

geometry by a design procedure not directly related to the optimization algorithm. This approach is called master-

follower, implicit programming or nested optimization, and has the advantage of updating both variables at each step of 

the solution process. 

It is worth noting that implicit programming procedures for truss geometry optimization, as the one presented in 

Martínez et al. (2007), work only for statically determinate trusses. In fact, considering the optimum topology to be 

statically determinate simplifies the relationship between the nodal coordinates and the objective function, expressed for 

example in terms of truss stiffness or truss volume, making possible to obtain analytical expressions for the gradient of 

the objective function with respect to the design variables. However, statically indeterminate trusses are commonly 

found in practice. In all such cases, a geometry optimization method which relies on the assumption of statically 

determinate structures cannot be applied. 

The purpose of this paper is to present a method for the simultaneous optimization of truss topology and geometry 

which can also be applied to design statically indeterminate optimal trusses (Torii, 2008). It is shown that by applying 

the concept of alternating optimization and using the truss stiffness as objective function, the problem of truss geometry 

optimization can be simplified to obtain analytical expressions for the gradient of the objective function. The use of the 

alternating optimization approach “uncouples” the problem in a topology optimization problem, with fixed geometry, 

and a geometry optimization problem, with fixed members areas. Therefore, in this approach two methods, one for 

topology optimization and one for geometry optimization, are required. The topology optimization method presented in 

(Hemp, 1973) is adopted. Since the problem of truss topology optimization is extensively described in literature 

(Achtziger, 2006; Achtziger, 2007; Hemp, 1973; Pedersen, 1970; Pedersen, 1993), this paper focuses on the geometry 

optimization for a fixed topology. 

  

2. A METHOD FOR TRUSS GEOMETRY OPTIMIZATION 
 

2.1 Formulation of the problem 
 

The geometry optimization problem considers a fixed topology, which implies that the members areas are constant 

throughout the geometry optimization process. The geometry is optimized by maximizing the stiffness, or minimizing 

the work done by the external loads (Achtziger, 2006; Achtziger, 2007; Hemp, 1973; Pedersen, 1970). The problem is 

formulated as follows: 
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where x is the design vector composed of chosen nodal coordinates; u is the vector of nodal displacements; F is the 

vector of applied nodal forces; m is the number of elements; le is the length of element e; Ae is the area of element e; V0 

is the maximum volume of material to be used; g is the constraint on the volume of material; K is the stiffness matrix of 

the structure; lb and ub represent a lower bound and an upper bound, respectively, for the design variable xi (nodal 

coordinate); W is the “work” done in the structure. Note that, for convenience, the quantity W(x) will be called “work” 

done by the external loads, even if rigorously speaking it is twice the actual work. In fact, for optimization purposes, the 

division by two can be omitted, since the multiplication of the objective function by a constant does not change the 

optimum design vector (Arora, 2004). 

Since it is known that maximizing the stiffness of the structure leads, for a single loading condition, to a decrease in 

the volume of material used (Achtziger, 2006; Achtziger, 2007; Hemp, 1973; Pedersen, 1970), the optimization method 

is expected to reduce the volume at each iteration. Consequently, the constraint of Eq. (2) may be dropped to simplify 
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the problem and to improve the efficiency of the optimization algorithm. However, according to the classical approach 

found in literature (Achtziger, 2006; Achtziger, 2007; Hemp, 1973; Pedersen, 1970; Pedersen, 1993), the proposed 

optimization method is developed by considering also Eq. (2). 

Regarding the other constraints, it is noted that the definition of bounds on the design variables by the use of Eq. (4) 

makes the problem better posed, since optimization problems with unbounded domains may present theoretical 

difficulties, and consequently burden the optimization algorithm (Arora, 2004; Nocedal and Wright, 1999). These 

bounds can be defined as upper and lower bounds in the nodal coordinates, which in two dimensions represent a 

rectangular region. Lower and upper bounds in the design variables can easily be incorporated in most optimization 

algorithms and are also known as box constraints. Besides, since these constraints are simple, they generally do not lead 

to a significant increase in computational effort when the optimization algorithm is applied. 

The formulation defined by Eqs. (1)-(4) does not consider the structure as statically determinate, and thus it can also 

be applied for statically indeterminate trusses. Finally, after the optimum geometry is found, the topology is updated by 

truss topology optimization and the process repeated. 

  

2.2. Evaluating the gradients – sensitivity analysis 
 

The optimization problem can be solved more efficiently if the gradients of the objective function and of the 

constraint with respect to the design variables can be evaluated by analytical expressions. If such expressions are not 

available, finite differences can be used to approximate these gradients, but at the cost of a significant increase in 

computational effort and, possibly, reduction of the convergence rate of the procedure. 

In order to obtain the gradient of the objective function and of the constraint, it is necessary to define its partial 

derivatives. Starting by the constraint of Eq. (2), the partial derivatives are 
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Note that since the topology is fixed, the areas Ai are not dependent on the design variables xi. Since the partial 

derivatives of the element lengths ∂le/∂xi can easily be computed, the evaluation of Eq. (5) and, consequently, of the 

gradient of the constraint, is simple. According to Fig. 1, the length of an element can be written as 
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manipulation, gives: 
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This derivative depends on whether the nodal coordinate xi is an x or y coordinate of the initial or end node of the 

element. Besides, if the nodal coordinate xi does not belong to the element e, the derivative is zero. Note that, for 

convenience, the design variables are called x1, x2, …, xi, even for y coordinates.  
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Figure 1. Cartesian coordinates x and y, initial node j, end node k, and inclination angle α, measured in the 

anti-clockwise direction, for the element e. 
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The partial derivatives of the objective function from Eq. (1), which are needed to obtain the gradient, can be written 

as 
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Differentiating Eq. (3) gives: 
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which, after rearrangement, is: 
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Substituting ∂u/∂xi back in the derivative ∂W/∂xi gives: 

 

i

T

ii

T

i xxxx

W

∂

∂
+








∂

∂
−

∂

∂
=

∂

∂ − F
uu

KF
KF .... 1 . 

 

Since Eq. (3) can be written in transpose form as: 
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the expression for ∂W/∂xi simplifies to 
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Eq. (8) can be used to evaluate the gradient of the truss stiffness with the use of the nodal displacements u, the 

derivatives of the stiffness matrix ∂K/∂xi, and the derivatives of the nodal forces ∂F/∂xi. Since the nodal displacements 

u must be previously found in order to obtain the value of the objective function from Eq. (1), its use in Eq. (8) does not 

lead to a significant increase in computational effort. Only one system of linear equations has to be solved and this does 

not depend on the size of the problem. Moreover, no assumptions have been made on the truss being statically 

determinate or indeterminate, and the previous equations hold for both cases. 

When F depends on x, the derivative ∂F/∂xi must be defined accordingly. This happens for example when the self 

weight of the structure is considered. However, in many cases the derivative ∂F/∂xi can be taken as zero, since the 

applied nodal forces are independent of the nodal coordinates x. For these cases, Eq. (8) then gives: 
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Note that a similar equation was obtained in (Wang et al., 2002), for the evaluation of sensitivity numbers for the 

combined shape and topology optimization of truss structures. 

Since the stiffness matrix of the entire structure can be written as the sum of all the element stiffness matrices, so 

does its derivative ∂K/∂xi. This summation of the individual matrices is the same as the assembling procedure, as 

described in (Bathe, 1996) and (Hutton, 2003). It can be formally expressed as follows: 
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where ke is the stiffness matrix of the element e in global coordinates, and where the stiffness matrices of the individual 

elements are represented by lower case k in order to avoid confusion with the stiffness matrix of the whole structure K. 

The stiffness matrix k of each element in global coordinates can be written as (Hutton, 2003): 

 

RkRk .. l
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where kl is the element stiffness matrix in the local coordinates and R is the coordinate transformation matrix, and the 

subscript e is dropped for formal convenience. The partial derivative of Eq. (11) is: 
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Starting by the element stiffness matrix in local coordinates: 

 










−

−
=

11

11
.

.

l

EA
lk , (13) 

 

where A is the element area, E is the Young modulus of the material and l is the length of the element, the following 

derivatives of the stiffness matrix kl are obtained: 
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where the derivative ∂l/∂xi is given by Eq. (7). Moreover, since the coordinate transformation matrix is (Hutton, 2003): 
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its derivatives become: 
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where, after some manipulation, the partial derivatives involved in Eq. (16) are: 
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This method for evaluating the objective function and its gradient requires that a matrix ∂K/∂xi is assembled for each 

design variables xi. Consequently, many matrices ∂k/∂xi must be evaluated at each iteration. Even if these matrices can 

be easily evaluated, the number of times they are used makes the process time consuming. However, this approach has 

three main advantages. First, in order to evaluate the objective function and its derivatives it is necessary to solve only 

one system of linear equations. This is very attractive since this operation can become very cumbersome for large 

problems. Second, the derivatives evaluated by this method are analytical, improving in this way the efficiency of the 

optimization method (Arora, 2004; Nocedal and Wright, 1999; Rao, 1996). Third, the procedure is general and can be 

applied also for statically indeterminate trusses. 
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2.3. Alternative loading conditions 

 
The method previously described can be modified in order to consider alternative loading conditions by taking the 

objective function as the sum of the “work” done by each load condition. Since the constraint from Eq. (2) represents 

the volume of the structure, it remains unchanged when considering alternative load conditions, and so does its 

derivatives. The only changes appear then in the objective function from Eq. (1) and its derivative from Eq. (9), which 

become 
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where α represents a particular loading condition, s is the number of loading conditions considered and f is now the 

objective function of the problem. 

In order to obtain the displacements uα for each load condition it is necessary to solve the system of linear equations 

from Eq. (3), which now gives 

 

αα FuK =. , (20) 

 

for a given loading condition α. 

From Eqs. (18) and (19) it can be seen that the new objective function (and consequently its derivative) is now the 

sum of the individual “works” done by each loading condition Fα taken over its respective displacements uα. The only 

change is that now the system of linear equations from Eq. (20) must be solved for each loading condition α. 

It is important to note that the problem of maximization of the stiffness is mathematically the same as the 

minimization of volume only when only one loading condition is considered (Hemp, 1973). Thus, when using the 

geometry optimization method here proposed, there is no guarantee that the minimization of the work will actually lead 

to a minimization of the volume for every case. However, for most cases, the geometry optimization here proposed does 

leads to a reduction of the volume of the structure, as shown in following examples. 

 

2.4. Some practical aspects 
 

From Eqs. (7) and (17) it can be seen that the partial derivatives ∂l/∂xi, ∂cos(α)/∂xi and ∂sin(α)/∂xi are zero when the 

nodal coordinate xi does not belong to the element e. In such cases, the matrix ∂k/∂xi from Eq. (12) becomes also a zero 

matrix. This states that when a given element e does not converge to a given nodal coordinate xi, it does not contribute 

to the derivative of the stiffness matrix associated to this nodal coordinate, or: 
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Therefore, instead of computing the matrix ∂k/∂xi for all the elements of the structure, it is more efficient to 

“remember” the elements that converge to each nodal coordinate and then compute ∂k/∂xi just for these elements. This 

can make the evaluation of ∂K/∂xi faster, since ∂k/∂xi must be evaluated for each element in order to assemble ∂K/∂xi. 

Considering for example the structure shown in Fig. 2.a. In order to evaluate ∂K/∂x7 for the nodal coordinate x7, it 

should be necessary to compute ∂k/∂x7 for every element in the structure and then assemble ∂K/∂x7. This would lead to 

the evaluation of eleven matrices ∂k/∂x7, since there are eleven members in the structure. However, if the previous 

simplification is used, ∂k/∂x7 is computed just for the elements that converge to the nodal coordinate x7, and the matrix 

would be evaluated five times. Since ∂K/∂xi must be evaluated for each nodal coordinate xi, the reduction in 

computational effort would be important. 

Another important practical aspect is to define the nodal coordinates that have a fixed position in the optimization 

process. For the truss shown in Fig. 2.a, the nodal coordinates x1, x2, x5, x9 and x10 can be assumed as fixed, since they 

represent the nodes of supports and of applied forces. The most efficient way of considering fixed nodes in the 

optimization problem is not considering them as design variables. The design vector x is then composed of just the 

nodal coordinates which are free to move in the geometry optimization process. For the example of Fig. 2.a, the design 

vector would be 
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There are two different approaches for defining bounds on the design variables (nodal coordinates). In the first 

approach, bounds can be defined locally for each design variable, like shown in Fig. 2.b. In this case, there are different 

bounds for each design variable, and this can be accomplished by defining a “square” around each node. The second 

approach is that of defining bounds for all the design variables at once, like shown in Fig. 2.c. In this case, the bounds 

are the same for all design variables, and this is the same as defining a rectangle around the entire structure. These two 

approaches may lead to different results, mainly because the feasible domain defined in the first approach, that of Fig. 

2.b, leads to a smaller feasible domain. Since the feasible domain is smaller, there is a lower number of possible 

solutions. However, note that the first approach may prevent the difficulty caused by node superposition (Achtziger, 

2007), when the bounds are defined appropriately. Thus, this approach may be recommended when there are many 

nodes which are allowed to move in the optimization process. 
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Figure 2. (a) Truss structure with nodal coordinates as design variables. The gray rectangles in (b) and (c) represent the 

feasible domains, bounded by box constraints on the nodal coordinates: bounds can be defined (b) locally for 

each design variable separately, and (c) globally for all the design variables at once.  

 

2.5. Optimization algorithm 
 

The algorithm for the alternating optimization of truss topology and geometry can be defined as follows: 

1. Start the optimization process with i = 0, and an initial geometry x
0
; 

2. Update the counter: i = i+1; 

3. Fix the geometry x
i-1

 and find an optimum topology A
i
 (members areas) with volume V0

i
; 

4. Fix the topology A
i
 and find an optimum geometry x

i
; 

5. Check convergence on the volumes V0
i
 and V0

i-1
 or the design vectors x

i
 and x

i-1
 from the current and last 

iteration. If a convergence criterion is satisfied, stop the optimization process. If the solution does not 

converge, go to step 2. 

As stated previously, when considering only one loading condition, the maximization of the truss stiffness is 

expected to lead to a reduction in its volume. Thus, the constraint of Eq. (2) may be dropped. In this case, the algorithm 

for the geometry optimization step is the following: 

1. Start the geometry optimization process with: fixed members areas A, an initial geometry x
0
, lower and 

upper bounds on the design variables, and a counter k = 0; 

2. Update the counter: k = k+1; 

3. For each design variable xi:  

a. For the members e that converge to xi: 

i. Find the derivative of the stiffness matrix ∂k/∂xi for the member e using Eq. (12); 

ii. Assemble ∂k/∂xi to ∂K/∂xi by Eq. (10); 

4. For each loading condition α: 

a. Solve the system of linear equations from Eq. (20) thus finding the vector of nodal displacements 

uα
k 
associated with the loading condition α; 

b. Obtain the value of the “work” Wα

k
 for the loading condition α from Eq. (1); 

c. For each design variable xi: 

i. With the derivative of the stiffness matrix for the entire truss ∂K/∂xi find the value of 

∂Wα/∂xi using Eq. (9); 

d. Compose the gradient of the “work” for the loading condition α with the values ∂Wα/∂xi;  

5. Sum the “works” Wα

k
 thus evaluating the objective function f

k
 from Eq. (18); 

6.  Sum the gradients of the “works” ∂Wα/∂xi thus evaluating the gradient of the objective function from Eq. 

(19); 

7. Use f
k
, grad(f

k
), lb and ub to update the geometry to x

k
. This is made through the use of a nonlinear 

optimization method; 
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8. Check convergence on f or x. If the problem converges, stop the algorithm. If the problem does not 

converge, go to step 2. 

The choice of the nonlinear optimization method may modify the algorithm, since different methods are available. 

However, these are the steps for evaluating the information needed by most optimization methods (Arora, 2004; 

Nocedal and Wright, 1999; Rao, 1996). 

 

3. NUMERICAL APPLICATIONS 
 

The applications presented in Figs. 3-7 refer to the following parameters: Lx and Ly are the structure size in the x 

and y coordinate, respectively; Dx and Dy are the size of the admissible domain of the problem in the x and y 

coordinates, respectively; b is the size of box constraints applied locally to the design variables; F is the magnitude of 

the applied forces; A are the members areas; E is the Young modulus; σ is the allowable stress of the material; W is 

twice the work done in the structure by the external loads; and V is the volume of the structure. In Figs. 3-8 bars are 

represented by full lines, global bounds by dashed lines, nodes by circles, and forces by arrows (each arrow represents a 

force of magnitude F). Local bounds applied to nodal coordinates are not shown. The values of F, E, σ, and A do not 

affect the optimal geometry and are taken as unity. 

The application shown in Fig. 3 is a simply supported “beam” with equal loads applied to the nodes of the lower 

chord (Fig. 3.a). The optimization problem is solved for two separate cases by assuming as design variables only the y 

coordinates of the upper chord nodes (Fig. 3.b), or both the x and y coordinates of such nodes (Fig. 3.c). In both cases 

the geometry optimization allowed to increase the stiffness of the structure. Clearly, allowing the nodes to move in both 

x and y directions leads to a better optimum geometry, since the feasible domain is larger. A similar application is 

considered in Fig. 4. This is a “beam” with a concentrated load (Fig. 4.a) and statically indeterminate support reactions. 

By assuming the y coordinates of the upper nodes as design variables, the geometry optimization allows to improve the 

truss geometry (Fig. 4.b). 

The applications shown in Figs. 5 to 7 are dealing with simultaneous optimization of geometry and topology. These 

applications highlight that geometry optimization can contribute to reduce the volume of the structure when used 

together with topology optimization. Fig. 5 shows a common type of structure, where it is interesting to note how the 

geometry optimization procedure succeeded in reducing the volume of material used. The application shown in Fig.6 is 

a classical problem from structural optimization, and in this case note that the reduction in the volume of material used 

is not so significant, since the solution from just topology optimization is similar to classical solutions for this problem 

(Hemp, 1973). The example from Fig. 7 shows another case commonly found in engineering practice. 

In Fig. 8, the solution from simultaneous optimization of geometry and topology when considering all loading 

conditions and only the most demanding loading condition are compared. In this case, note that considering all loading 

conditions leads to a different solution from when considering only the most demanding one. 

It is important to note that since the convexity of the nonlinear geometry optimization problem is not studied here, 

there is no guarantee that the optimum solutions obtained are global minima. However, even if there is no proof that the 

solutions are global minima, it is demonstrated how the optimum design is generally much improved by the geometry 

optimization process. 

 

 

 
W = 1111.895  

(a) 

 
W = 201.306 

(b) 

 
W =149.543  

(c) 

Figure 3. (a) Initial structure (Lx = 9, Ly = 1, Dx = 9, Dy = 6). Optimum geometry considering as design variables (b) 

the y coordinates only, and (c) both x and y coordinates of the upper chord nodes. 
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W = 33.151 

(b) 

 
W = 8.956 

(c) 

Figure 4. (a) Initial structure (Lx = 14, Ly = 1, Dx = 14, Dy = 2.5). (b) Optimum geometry considering the y 

coordinates of the upper chord nodes as design variables. 

 

 

 

  
(a) 

  
V = 24.000 

(b) 

 
V = 16.510 (c) 

Figure 5. (a) Initial structure (Lx = 8, Ly = 1, Dx = 8, Dy =2). (b) Optimum topology. (c) Optimum design from 

simultaneous geometry and topology optimization, considering the y coordinates of the upper chord nodes as design 

variables. 

 

 

 

 
(a) 

 
V= 38.000 

(b) 

  
V= 35.062 

(c) 

Figure 6. (a) Initial structure (Lx = 7, Ly = 2). (b) Optimum topology. (c) Optimum design from simultaneous geometry 

and topology optimization, considering as design variables the x and y coordinates of the upper and lower chord nodes, 

and the x coordinates of the nodes aligned with the applied load. Bounds on the design variables are defined locally, by 

a square of size b =0.8 centered at the original node position. 
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a) 

 
V = 0.53 

b) 

 
V = 0.50 

c) 

Figure 7. a) Initial structure subjected to three alternative loading conditions (Lx =1, Ly = 4), considering F1 = 10 and 

F2 = 1. Results from b)only topology optimization and c)simultaneous optimization of geometry and topology. In the 

geometry optimization step all nodes are allowed to “move” left and right. Bounds on the design variables for the 

geometry optimization are defined locally, by a square of size b =0.4 centered at the original node position. 
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a) b) 

c) d) 

Figure 8. Initial structure (Lx =8, Ly = 1) considering  a) only loading condition at mid span and b) considering loading 

conditions at every node from the lower chord. Note that in b) each arrow represents a different loading condition, 

which are applied separately to the structure. Results considering c) only loading condition at mid span and d) all 

loading conditions. In the geometry optimization process all nodes (except the nodes of supports) are allowed to move 

up and down. Bounds on the design variables for the geometry optimization are defined locally, by a square of size b =1 

centered at the original node position. 

 

4. CONCLUSIONS 
 

A method for the simultaneous optimization of truss topology and geometry, which can also be applied to design 

statically indeterminate structures, has been presented. It has been shown that by applying the concept of alternating 

optimization and using the truss stiffness as objective function, the problem of truss geometry optimization can be 

simplified to obtain analytical expressions for the gradient of the objective function.  

The results of the presented applications show that the proposed approach can lead to a significant reduction of the 

volume of the optimal structures. It is, however, worth noting that in this paper buckling is not considered. This is a 

crucial aspect in the design of truss structures, and consequently represents the most important developments required in 

the future to allow the application of the method to practical cases. Despite the need for these improvements, the 

proposed method has been proven to represent an efficient approach to simultaneous optimization of truss topology and 

geometry. 
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